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Abstract

We introduce a new quantum algorithm for computing the Betti numbers of a simplicial
complex. In contrast to previous quantum algorithms that work by estimating the eigenvalues
of the combinatorial Laplacian, our algorithm is an instance of the generic Incremental Algo-
rithm for computing Betti numbers that incrementally adds simplices to the simplicial complex
and tests whether or not they create a cycle. In contrast to existing quantum algorithms for
computing Betti numbers that work best when the complex has close to the maximal number
of simplices, our algorithm works best for sparse complexes.

To test whether a simplex creates a cycle, we introduce a quantum span-program algorithm.
We show that the query complexity of our span program is parameterized by quantities called
the effective resistance and effective capacitance of the boundary of the simplex. Unfortunately,
we also prove upper and lower bounds on the effective resistance and capacitance, showing both
quantities can be exponentially large with respect to the size of the complex, implying that our
algorithm would have to run for exponential time to exactly compute Betti numbers.

As a corollary to these bounds, we show that the spectral gap of the combinatorial Laplacian
can be exponentially small. As the runtime of all previous quantum algorithms for computing
Betti numbers are parameterized by the inverse of the spectral gap, our bounds show that all
quantum algorithms for computing Betti numbers must run for exponentially long to exactly
compute Betti numbers.

Finally, we prove some novel formulas for effective resistance and effective capacitance to
give intuition for these quantities.

1 Introduction.

The past few years has seen the development of quantum algorithms with the potential to
speed up computation of topological features of simplicial complexes called Betti numbers. Betti
numbers are important topological invariants of a space; indeed, there is an entire, rapidly-growing
field called Topological Data Analysis (TDA) that studies the application of topological invariants
like Betti numbers (among other) [10, 16, 20]. Accordingly, the study of quantum algorithms for
computing Betti numbers has been deemed Quantum Topological Data Analysis (QTDA).

Betti numbers can be both time and space inefficient for classical computers to compute. For
example, a simplicial complex on vertices can be exponentially large and it can take exponential
time to compute Betti numbers in arbitrary dimensions. Quantum computers offer a potential
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solution to the shortcomings of the classical algorithm. For example, quantum computers can
efficiently store a simplicial complex with n vertices using only O(poly(n)) qubits.

However, while these quantum algorithms have certain advantages over their classical counter-
parts like improved space complexity, QTDA algorithms only achieve significant advantage over
classical TDA algorithms under certain circumstances. QTDA algorithms only achieve significant
speed up over classical algorithms when the input complex is clique-dense—it has close to the max-
imal number of simplices—and when the spectral gap of the combinatorial Laplacian of the complex
is polynomially small. This second point is a particular problem as, before now, it was unknown
how small the spectral gap of the combinatorial Laplacian could be. This makes the spectral gap of
the combinatorial Laplacian an example of “fine print” [1]: an unbounded parameter in the runtime
of a celebrated quantum algorithm.

1.1 Our Contributions.

• In Sections 3 and 4, we provide a novel quantum algorithm for computing Betti numbers
using the framework of span programs [40, 59]. As opposed to existing QTDA algorithms
that work by estimating the eigenvalues of the combinatorial Laplacian or singular values
of the boundary matrices, our algorithm is more similar to classical matrix-reduction algo-
rithms for computing Betti numbers as it works by incrementally adding simplices to the
simplicial complex and testing if these simplices create or destroy a cycle. One advantage of
our algorithm is that it avoids the step of creating a superpostion over the k-simplices, which
is a bottleneck of existing QTDA algorithms that restricts their utility to the clique-dense
regime. In Section 4.3 and Section 4.4, we show that the query and time complexity of our
span program algorithm for QTDA is parameterized by the maximum effective resistance and
capacitance of cycles in K. In Section 4.6, we compare our algorithm with existing QTDA
algorithms. The culmination of this section is the following theorem.

Theorem 1.1. Let K be a simplicial complex. There is a quantum algorithm for computing
the dth Betti number βd of K in time

Õ

((√
RmaxCmax

λ̃min

n0 +
√
Rmaxn0

)
(nd + nd+1)

)
,

where

• ni is the number of i-simplices of K.
• Rmax is the maximum finite effective resistance R∂σ(L) of the boundary of any d- or

(d+ 1)-simplex σ ∈ K in any subcomplex L ⊂ K.
• Cmax are the maximum finite effective capacitance C∂σ(L,K) of the boundary of any d-
or (d+ 1)-simplex σ ∈ K in any subcomplex L ⊂ K.
• λ̃min is the minimum spectral gap of the normalized up Laplacians L̃up

d−1[K] and L̃up
d [K].

• In Section 5, we provide upper bounds on the maximum effective resistance by the size of the
simplicial complex and the maximal rank of the torsion subgroup of the simplicial complex, as
well as looser upper bounds purely in terms of the size of the complex. These upper bounds
show that the effective resistance can be at most exponentially-large with respect to the size of
the complex. We also provide similar upper bounds on effective capacitance for special cases.
Finally, we provide families of simplicial complexes with cycles whose effective resistance or
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effective capacitance is exponentially large, thus matching the upper bound up to the base
of the exponent. This implies that our algorithm for QTDA can take exponentially long in
the worst case. However, in the next paragraph, we will see that our results imply all other
QTDA algorithms must run for exponential time as well.

• In Section 6, we show how the upper and lowers bounds for effective resistance provide lower
and upper bounds for the spectral gap of the combinatorial Laplacian respectively; thus, the
spectral gap is exponentially small in the worst case. Moreover, we show there are clique-dense
complexes that achieve worst-case spectral gap.

Theorem 1.2. Let K be a simplicial complex. Let ni be the number of i-simplices of K. Let
n = max{min{nd−1, nd},min{nd, nd+1}}. Then the spectral gap λmin(Ld[K]) ∈ Ω

(
1

n2dn

)
.

Theorem 1.3. Let d, n ≥ 1. There are constants cd, κd that depends only on d and a d-
dimensional simplicial complex Cnd with nd = Ω(κd

(
n0

d

)
) d-simplices such that the spectral

gaps λmin(Ld−1[Cnd ]), λmin(Ld[Cnd ]) ∈ O( 1
c
nd
d

).

This answers one of the most important question in QTDA: how small can the spectral gap
be? As all existing QTDA algorithms are parameterized by the inverse of the spectral gap
of the combinatorial Laplacian 1

λmin
, this implies that all existing QTDA algorithms need

exponential time to exactly estimate Betti numbers.1Additionally, the space complexity of
some QTDA algorithms is parameterized by log( 1

λmin
), so these algorithms will need space

proportional to the number of (d−1)−, d−, or (d+1)-simplices, rather than space proportional
to the number of vertices.

• We also prove some interesting formulas for effective resistance and capacitance that give
intuition for these quantities. In Appendix B, we provide series and parallel formulas for
effective resistance akin to the formulas for effective resistance in graphs. We also show
that effective resistance satisfies a Rayeligh monotonicity property akin to effective resistance
in graphs. Finally, in Appendix C, we show that effective resistance is dual to effective
capacitance for embedded simplicial complexes.

1.2 Related Work.

History of QTDA. Lloyd, Garnerone, and Zanardi (LGZ) introduced the first quantum algo-
rithm for computing Betti numbers up to a multiplicative error [48]. Their algorithm works by
estimating the eigenvalues of the combinatorial Laplacian, which is inspired by Friedman’s classi-
cal algorithm for computing Betti numbers [23]. The LGZ algorithm has the advantage that its
runtime is only polynomial with respect to the number of vertices, as opposed to the number of
simplices like the matrix reduction algorithm. The trade-off is that this algorithm gains a depen-
dence on the inverse of the spectral gap and the ratio of the number of simplices to the number of
possible simplices. The LGZ algorithm performs best in the regime where the spectral gap of the
combinatorial Laplacian is polynomially lower-bounded and the simplicial complex is clique-dense,
meaning it has close to the maximal number of simplices. Subsequent works have improved the
LGZ algorithm in different ways but maintain a runtime dependence on the inverse of the spectral
gap and the clique density [29, 50, 66].

1This exponential time complexity is not a result of the quantum nature of these algorithms. Some classical
algorithms for computing Betti numbers are also parameterized by the inverse of the spectral gap, so these algorithms
would need to run for exponential time as well [3, 23].
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Another line of QTDA research has been developing algorithms for persistent Betti numbers.
While the LGZ algorithm was initially claimed to be able to compute persistent Betti numbers,
this was later disproved by Meijer [51] and Neumann and den Breeijen [55]. Hayakawa was the first
to develop a quantum algorithm for computing persistent Betti numbers [33]. McArdle, Gilyén,
and Berta have also developed algorithms for computing persistent Betti numbers [50].

Hardness of Computing Betti Numbers. In addition to new algorithms for computing Betti
numbers, there have also been a number of works arguing computing Betti numbers is hard in
general. Adamaszek and Stacho [2] show that determining if a simplicial complex has non-zero
Betti number is NP-Hard when parameterized either by the number of vertices and the number of
maximal simplices, or the number of vertices and number of minimal non-faces. Additionally, they
show the problem is NP-Hard for clique complexes when parameterized by the number of vertices.
Schmidhuber and Lloyd [61] show that computing Betti numbers of a clique complex is #P-Hard
and estimating the Betti number up to a multiplicative constant is NP-Hard when parameterized
by the number of vertices. Moreover, the hardness results of Schmidhuber and Lloyd hold for
clique-dense clique complexes. This is an important restriction as the runtime of LGZ and and
other QTDA algorithms are lowest for clique-dense complexes. Here, the assumptions on the input
are vital. Computing Betti numbers is in P when parameterized by the number of all simplices
in the complex. This does not contradict P ̸= NP though, as the number of simplices can be
exponentially large with respect to the number of vertices.

There have also been a number of works showing that problems related to computing Betti
numbers are hard for the quantum computing complexity class DCQ-1. Crichigno and Kohler [12]
showed that determining if the Betti number of a clique complex is nonzero is QMA1-Hard when
parameterized by the number of vertices, and computing the Betti number of a clique complex is
#BQP-Hard. Gyurik, Cade, and Dunjko [30] show that a generalization of Betti number estimation
called low-lying spectral density estimation (LLSD) is DCQ1-Complete, suggesting that LLSD may
be classically intractable. Cade and Crichigno [8] showed that estimating Betti numbers for general
chain complexes (not just those arising from simplicial complexes) is also DCQ1-complete.

Lower Bounds on the Spectral Gap of the Combinatorial Laplacian. All existing QTDA
algorithms are parameterized by the inverse of the spectral gap of the combinatorial Laplacian.
While we show the spectral gap can be exponentially small, there have also been a number of
exact or expected lower bounds on the spectral gap of the combinatorial Laplacian for certain
families of simplicial complexes [4, 23, 28, 44, 45, 46, 63, 68]. However, these bounds place non-
trivial assumptions on the simplicial complex so should not be taken to represent general simplicial
complexes.

2 Preliminaries.

Algebraic Topology. A simplicial complex K on a set of vertices V is a subset of the power
set K ⊆ P (V ) with the property that if σ ∈ K and τ ⊂ σ then τ ∈ K. An element of K is a simplex.
A simplex σ ∈ K of size |σ| = d + 1 is a d-simplex. The set of all d-simplices of K is denoted
Kd, and the number of d-simplices is denoted nd = |Kd|. The d-skeleton of K, denoted Kd, is the
simplicial complex of all simplices of K of dimension at most d, i.e. Kd = ∪di=0Ki. The dimension
of K is the largest d such that K contains a d-simplex; a 1-dimensional simplicial complex is a
graph.
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The dth chain group Cd(K) is the vector space over R with orthonormal basis Kd. An element
of Cd(K) is a d-chain. Unless otherwise stated, all vectors and matrices will be in the basis Kd.
For a chain f ∈ Cd(K), we denote its σ coordinate f(σ). Finally, the support of a chain f is the
set of simplices given a non-zero value by f and is denoted supp(f) = {σi ∈ Kd : f(σi) ̸= 0}.

We assume there is a fixed but arbitrary order on the vertices V = (v1, . . . , vn). Let σ =
{vi0 , . . . , vid} be a d-simplex in K with vij ≤ vik whenever j ≤ k. The boundary of σ is the

(d − 1)-chain ∂σ =
∑d

j=0(−1)j · (σ \ {vij}). The dth boundary map is the linear map ∂d :
Cd(K) → Cd−1(K) defined ∂df =

∑
σ∈Kd

f(σ)∂σ where f(σ) denotes the component of f indexed
by the simplex σ. An element in ker ∂d is a cycle, and an element in im ∂d is a boundary or a
null-homologous cycle. See Figure 1. The boundary maps have the property that ∂d ◦ ∂d+1 = 0,
so im ∂d+1 ⊂ ker ∂d. The dth homology group is the quotient group Hd(K) = ker(∂d)/ im(∂d+1).
The dth Betti number βd is the dimension of Hd(K). The dth coboundary map is the map
δd := ∂Td+1 : Cd(K) → Cd+1(K). An element of ker δd is a cocycle, and an element in im δd−1

is a coboundary. We will use the notation ∂[K] and δ[K] when we want to specify the complex
associated with the (co)boundary operator.

While our algorithms calculate homology with real coefficients, for some of our topological
results, we will need to consider homology with integer coefficients. The integral chain group
Cd(K,Z) is the free abelian group generated by the set of d-simplices Kd whose elements are formal
sums

∑
σi∈Kd

αiσi with coefficients αi ∈ Z. The integer homology groups are constructed in the
same way as the real homology groups. We define boundary maps ∂d : Cd(K;Z)→ Cd−1(K;Z) the
same way as for the real chain groups, except now the boundary maps are group homomorphisms
rather than linear maps. The integral homology groups are the quotient groups Hd(K;Z) =
ker ∂d/ im ∂d+1.

Laplacians. The dth up Laplacian is Lup
d = ∂d+1δd, the dth down Laplacian is Ldown

d =
δd−1∂d, and the dth (combinatorial) Laplacian is Ld = Lup

d +Ldown
d . The Laplacians define the

following orthogonal decomposition of the dth chain group Cd(K) called the Hodge Decomposi-
tion.

Cd(K) = imLup
d ⊕ imLdown

d ⊕ kerLd

= im ∂d ⊕ im δd−1 ⊕ kerLd

where the second equality follows from the fact that imAAT = imA for any matrix A. We call
the subspaces im ∂d, im δd−1, and kerLd the boundary, coboundary, and harmonic spaces.
Arguably the fundamental theorem of the combinatorial Laplacian is the Hodge Theorem.

Theorem 2.1 (Hodge Theorem, Eckmann [19]). The dth harmonic space is isomorphic to the dth

homology group, i.e. kerLd
∼= Hd(K).

Therefore, the dth Betti number can equivalently be computed by computing the rank of Ld, a
fact used by many existing QTDA algorithms.

The following lemma gives several properties of the spectrum of the combinatorial Laplacian.

Lemma 2.2. Let specNZ(A) denote the multiset of the non-zero eigenvalues of a linear operator
A. Let K be a simplicial complex. Let d > 0 be a positive integer. Then

1. (Goldberg [24, Lemma 4.1.8]) specNZ(Lup
d ) = specNZ(Ldown

d+1 )

2. (Goldberg [24, Lemma 4.1.7]) specNZ(Ld) = specNZ(Lup
d ) ∪ specNZ(Ldown

d )
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3. (Goldberg [24, Lemma 4.2.3]) If K has connected components K1, . . . ,Km, then

specNZ(Ld[K]) = specNZ(Ld[K1]) ∪ · · · ∪ specNZ(Ld[Km])

where all unions are multiset unions.

The up, down, and combinatorial Laplacian are all positive-semidefinite, meaning their eigen-
values are all non-negative [24]. The spectral gap λmin(Ld) is the smallest non-zero eigenvalue of
the combinatorial Laplacian. Lemma 2.2 Part 2 implies the following theorem about the spectral
gap of the combinatorial Laplacian.

Corollary 2.3. Let K be a simplicial complex. Let d be a positive integer. Then

λmin(Ld[K]) = min{λmin(Ldown
d [K]), λmin(Lup

d [K])}

In Section 6, we discuss upper and lower bounds on the spectral gap. There are also known
upper and lower bounds on the largest eigenvalue of the combinatorial Laplacian.

Theorem 2.4. Let K be a simplicial complex with n0 vertices. Let d be a natural number. Then
the maximal eigenvalue of the combinatorial Laplacian λmax(Ld) ≤ n0.

Proof. Let ∆n0 be the complete complex on n0 vertices. The maximum eigenvalue of the dth

up Laplacian is λmax(Lup
d [∆n0 ]) = n0 for any dimension d [26, Lemma 2.6]. Moreover, by the

interlacing theorem of eigenvalues of the up Laplacian, λmax(Lup
d [K]) ≤ λmax(Lup

d [∆n0 ]) for any
subcomplex K ⊂ ∆n0 [34, Theorem 1.1]. The theorem follows as λmax(Ld[K]) = max{λmax(Lup

d [K]),
λmax(Lup

d−1[K])} ≤ n0

We also consider two variants of the Laplacian variants of the up-Laplacian: the weighted up
Laplacian and the normalized up Laplacian. Let w : Kd+1 → R+ be a weight function on the
(d+1)-simplices. Let W : Cd+1(K) → Cd+1(K) be the diagonal matrix with Wτ,τ = w(τ). The

dth weighted up Laplacian is Lup,W
d = ∂d+1Wδd. The degree of a d-simplex σ is deg(σ) =∑

τ∈Kd+1 : σ⊂τ w(τ). Let D : Cd(K) → Cd(K) be the diagonal matrix with Dσ,σ = deg(σ). The

dth normalized up Laplacian is L̃up
d = D−1/2∂d+1WδdD

−1/2. The following theorem relates the
spectral gap of the normalized and unnormalized Laplacians. A proof can be found in Appendix A

Lemma 2.5. Let K be a simplicial complex. Let dmin and dmax be the minimum and maximum
degrees of any d-simplex in K. Suppose that dmin > 0. The normalized and unnormalized spectral
gap are related as follows:

1

dmax
λmin(Lup

d ) ≤ λmin(L̃up
d ) ≤ 1

dmin
λmin(Lup

d )

Pseudoinverse of a Linear Map. Let A : Rn → Rm be a rank k linear operator with singular
value decomposition A =

∑k
i=1 σiuiv

T
i . The pseudoinverse of A is the linear operator A+ : Rm →

Rn defined A+ =
∑k

i=1 σ
−1
i uiv

T
i . While this is in the most compact definition of the pseudoinverse,

it is not the most informative. Equivalently, the pseudoinverse of A : Rm → Rn is the unique
linear operator with the following properties: (1) A+ maps each vector x ∈ imA to the unique
vector y ∈ imAT such that Ay = x and (2) A+ maps each vector in (imA)⊥ to 0. The following
are well-known properties of the pseudoinverse that follow from these definitions

Lemma 2.6. Let A : Rm → Rn be a linear map.

1. (AAT )+ = (AT )+A+.

2. For x ∈ imA, A+x = arg min{∥y∥ : Ay = x}
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Figure 1: Left: The 1-cycle is null-homologous as it is the boundary of the pictured 2-chain. Right:
The 1-cycle is not null-homologous as it is not the boundary of any 2-chain. Coefficients on colored
simplices are ±1. Orientations on the simplices have been omitted for simplicity.

Bra-Ket Notation. When discussing quantum algorithms, we will use bra-ket notation for
vectors. As this paper may also be of interest to topologists who may be unfamiliar with this
notation, we introduce bra-ket notation now. Assuming a fixed basis for a finite vector space, a
bra is a row vector represented by the notation ⟨v|. A ket is a column vector represented by the
notation |v⟩. Using bras and kets, we can represent an inner product as ⟨u|v⟩, an outer product as
|u⟩⟨v|, or a tensor product as |u⟩|v⟩.

3 The Incremental Algorithm for Computing Betti Numbers.

In this section, we review the incremental algorithm for computing Betti numbers introduced by
Delfinado and Edelsbrunner [13]. The incremental algorithm is a generic framework for computing
Betti numbers based around the primitive of null-homology testing. See Figure 1

Problem (Null-Homology Testing). Given a simplicial complex K and a cycle γ in K, determine
if γ is null-homologous.

The Incremental Algorithm for Computing Betti Numbers computes βd by testing if the
boundary of simplices are null-homologous. Specifically, the incremental algorithm incrementally
adds d-simplices to the simplicial complex and and then performs a null-homology test on their
boundaries to see how the dimension of the spaces ker ∂d and im ∂d+1 change.

To see how this works, fix an order on the d-simplices Kd = {σ1, . . . , σd}, and then iteratively
add each simplex σi in increasing order of i. Adding the simplex σi will either increase the dimension
of ker ∂d or im ∂d−1 by 1. If ∂σi is null-homologous in Kd−1 ∪ {σ1, . . . , σi−1}, then adding σi will
increase the dimension of ker ∂d by 1, which also increases βd by 1. If not, then adding σi will
decrease im ∂d−1 by 1, which also decreases βd−1 by 1.2 The incremental algorithm is summarized
in Algorithm 1.

In the classical matrix reduction algorithm for computing Betti numbers, testing whether ∂σi
is null-homologous is done by reducing the column corresponding to σi in the boundary matrix,
which takes O(nd−1nd) time in the worst case. However, there are special cases where null-homology
testing can be performed much more quickly. For example, when a simplicial complex is embedded
in R3 or the 3-sphere, null-homology testing can be performed in nearly-linear time using the

2In their original paper on the incremental algorithm [13], Delfinado and Edelsbrunner phrase this slightly differ-
ently as testing “whether σi is in [the support of] a cycle.” It is straightforward to verify that σi is in the support of
a cycle if and only if ∂σi is null-homologous.
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Algorithm 1 The incremental algorithm for computing the dth Betti Number βd [13]

βd ← 0
for σi ∈ Kd = {σ1, . . . , σnd

} do
if ∂σi is null-homologous in Kd−1 ∪ {σ1, . . . , σi−1} then

βd ← βd + 1
end if

end for
for τj ∈ Kd+1 = {τ1, . . . , τnd+1

} do
if ∂τj is not null-homologous in Kd ∪ {τ1, . . . , τj−1} then

βd ← βd − 1
end if

end for
Return βd

union-find algorithm [13]. In the next section, we give a quantum algorithm for null-homology
testing.

4 A Quantum Algorithm for Null-Homology Testing.

In this section, we provide a quantum algorithm based on the span program model to decide
whether or not a cycle γ is null-homologous in a simplicial complex K.

Our algorithm is a generalization of the quantum algorithm developed by Belovs and Reichardt
to decide st-connectivity in a graph [5]. Their algorithm is parameterized by the effective resistance
and capacitance between the vertices s and t. The query complexity of our algorithm is parameter-
ized by higher-dimensional analogues of effective resistance and capacitance of γ that we introduce
in Section 4.3.1.

Upper bounds on the effective resistance and capacitance in graphs imply a query complexity
of O(n3/2) for st-connectivity, where n is the number of vertices [37]. In Section 5, we provide
upper bounds on the effective resistance and capacitance. Our upper bounds on effective resistance
and capacitance imply that the query complexity is polynomial in both the number of d-simplices
as well as the cardinality of the largest torsion subgroup of a relative homology group of K. In
the case that K is a graph, our analysis of the witness sizes matches the O(n3/2) upper bounds of
previous analyses. Specifically, under the assumptions that K is relative torsion free and that γ is
the boundary of a d-simplex (which may or may not be included in the complex), we match the
O(n3/2) upper bound. These assumptions are always true for st-connectivity in graphs, which is
why we match the query complexity for this problem. However, in Section 5.2, we provide examples
of simplicial complexes where the effective resistance or capacitance of γ is exponentially large.

4.1 A Brief Introduction to Span Programs.

Span programs were first defined by Karchmer and Wigderson [40] and were first used for
quantum algorithms by Reichardt and Špalek [59]. Intuitively, a span program is a model of
computation which encodes a boolean function f : {0, 1}n → {0, 1} into the geometry of two vector
spaces and a linear operator between them. Encoding f into a span program implies the existence
of a quantum query algorithm evaluating f (Theorem 4.1.)
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Definition 1. A span program P = (H,U , |τ⟩, A) over the set of strings {0, 1}n is a 4-tuple
consisting of:

1. A finite dimensional Hilbert space H = H1 ⊕ · · · ⊕ Hn where Hi = Hi,0 ⊕Hi,1,

2. a vector space U ,

3. a non-zero vector |τ⟩ ∈ U , called the target vector

4. a linear operator A : H → U .

For every string x = (x1, . . . , xn) ∈ {0, 1}n we associate the Hilbert space H(x) = H1,x1⊕· · ·⊕HN,xn

and the linear operator A(x) = AΠH(x) : H → U where ΠH(x) is the projection of H onto H(x). A
string x ∈ {0, 1}n is a positive instance if |τ⟩ ∈ imA(x) and is a negative witness otherwise.

A span program P decides the function f : {0, 1}n → {0, 1} if f(x) = 1 when x is a positive
instance and f(x) = 0 when x is a negative instance. A span program can also evaluate a partial
boolean function g : D → {0, 1} where D ⊂ {0, 1}n by the same criteria.

Span programs are a popular method in quantum computing because there are upper bounds
on the complexity of evaluating span programs in the query model. The query model evaluates
the complexity of a quantum algorithm by its query complexity, the number of times it queries
an input oracle. In our case, the input oracle returns the bits of the binary string x. The input
oracle Ox takes Ox : |i⟩|b⟩ → |i⟩|b⊕xi⟩ where i ∈ [n]. Observe that the states |i⟩ can be stored on
⌈log n⌉ qubits. Reichardt [60] showed that the query complexity of a span program is a function of
the positive and negative witness sizes of the program, which we now define.

Definition 2. Let P be a span program and let x ∈ {0, 1}n. A positive witness for x is a vector
|w⟩ ∈ H(x) such that A|w⟩ = |τ⟩. The positive witness size of x is

w+(x,P) = min{∥|w⟩∥2 : |w⟩ ∈ H(x), A|w⟩ = |τ⟩}.

If no positive witness exists for x, then w+(x,P) =∞.
A negative witness for x is a linear map ⟨w| : U → R such that ⟨w|AΠH(x) = 0 and ⟨w|τ⟩ = 1.

The negative witness size of x is

w−(x,P) = min{∥⟨w|A∥2 : ⟨w| : U → R, ⟨w|AΠH(x) = 0, ⟨w|τ⟩ = 1}.

If no negative witness exists for x, then w−(x,P) =∞.

Theorem 4.1 (Reichardt [60]). Let D ⊂ {0, 1}n and f : D → {0, 1}. Let P be a span program that
decides f . Let W+(f,P) = maxx∈f−1(1)w+(x,P) and W (f,P)− = maxx∈f−1(0)w−(x,P). There is

a bounded error quantum algorithm that decides f with query complexity O
(√

W+(f,P)W−(f,P)
)
.

A caveat to the query complexity model is that in general the time complexity of an algorithm
can be much larger than its query complexity.

4.2 A Span Program for Null-Homology Testing.

In this section, we present a span program for testing if a cycle is null-homologous in a simplicial
complex. This span program is a generalization of the span program for st-connectivity defined in
[40] and used to develop quantum algorithms in [5, 9, 37, 38].

Let K be a d-dimensional simplicial complex. Let γ ∈ Cd−1(K) be a (d − 1)-cycle. Let nd be
the number of d-simplices in K. Order the d-simplices {σ1, . . . , σnd

}. Let w : Kd → R be a weight
function on the d-simplices, and let W : Cd(K)→ Cd(K) be the diagonal weight matrix. We define
a span program over the strings {0, 1}nd as follows.
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1. H = Cd(K), with Hi,1 = span{|σi⟩} and Hi,0 = {0}.

2. U = Cd−1(K)

3. A = ∂d
√
W : Cd(K)→ Cd−1(K)

4. |τ⟩ = γ

We denote the above span program by PK. Let x ∈ {0, 1}nd be a binary string. We define
the subcomplex K(x) := Kd−1 ∪ {σi : xi = 1}; that is, K(x) contains the d-simplices σi such that
xi = 1. There exists a solution v to the linear system ∂d

√
WΠK(x)v = γ if and only if the cycle γ is

null-homologous in K(x) if and only if x is a positive instance of PK. The span program PK decides
the boolean function f : {0, 1}nd → {0, 1} where f(x) = 1 if and only if γ is a null-homologous
cycle in the subcomplex K(x).

Theorem 4.1 allows us to bound the query complexity of our span program by the size of positive
and negative witness. In the next section, we provide bounds on the positive and negative witness
size of our span program.

4.3 Witness Sizes of the Null-Homology Testing Span Program.

In this section, we bound the positive and negative witness sizes of our span program for null-
homology testing. We will show that they are equal to the quantities called the effective resistance
and effective capacitance of the cycle. We first introduce these quantities and show some of their
properties. Then, in Section 4.3.4, we show that these quantities are the witness sizes of our span
program.

4.3.1 Background: Effective Resistance and Effective Capacitance.

Let γ ∈ Cd−1(K) be a cycle in a simplicial complex. We associate two quantities with γ: its
effective resistance and effective capacitance. The effective resistance is finite if and only if γ is
null-homologous, and the effective capacitance is finite if and only if γ is not null-homologous. We
begin with the definition of effective resistance.

Definition 3. Let K be a simplicial complex with weight function w : K → R+. Let γ be a
(d−1)-cycle in K. The effective resistance of γ is

Rγ(K,W ) =

γT
(
Lup,W
d−1

)+
γ if γ is null-homologous

∞ otherwise

When obvious or when K is unweighted, we drop the weights from the notation and write Rγ(K).

This definition of effective resistance is consistent with effective resistance in graphs (see [62])
and other definitions of effective resistance in simplicial complexes [42, 57, 31].3However, this defini-
tion gives little intuition about effective resistance. We now prove there is an alternative definition
of effective resistance in terms of chains with boundary γ. We begin with two definitions.

3Effective resistance can be defined even more generally using the combinatorial Laplacian. For simplicity, consider
the unweighted case. For a null-homologous (d−1)-cycle γ, the effective resistance can be defined Rγ(K) = γTL+

d−1γ.

This equals the formula in Definition 3 because (1) L+
d−1 = (Lup

d−1)
+ + (Ldown

d−1 )+ and (2) γT (Ldown
d−1 )+γ = 0 as

γ ∈ kerLdown
d−1 = ker(Ldown

d−1 )+.
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Definition 4. Given a d-dimensional simplicial complex K and a (d−1)-dimensional null-homologous
cycle γ, a unit γ-flow is a d-chain f ∈ Cd(K) such that ∂f = γ.

In the case of graphs, a unit st-flow is a flow sending 1 unit of flow from s to t.

Definition 5. Given a d-dimensional simplicial complex K with weight function w : Cd(K)→ R+

and a unit γ-flow f , the flow energy of f on K is

J(f) =
∑

σ∈K(d)

f(σ)2

w(σ)
= fTW−1f

where W is the nd × nd diagonal matrix whose entries are the weights of the d-simplices.

We will now relate unit γ-flows and their energy to effective resistance. This generalizes a
formula for effective resistance in graphs [6, Chapter IX Corollary 6].

Lemma 4.2. Let K be a simplicial complex and let γ be a null-homologous d-cycle. The effective
resistance of γ is the minimum flow energy over all unit γ-flows, i.e.

Rγ(K) = min{J(f) | ∂f = γ}

Proof. Our first observation is that we can factor the weighted Laplacian as

Lup,W
d = ∂d+1Wδd

= ∂d+1W
1/2W 1/2δd

= (∂d+1W
1/2)(∂d+1W

1/2)T

By Lemma 2.6 Part 1, (Lup,W
d )+ = ((∂d+1W

1/2)T )+(∂d+1W
1/2)+. Therefore,

Rγ(K) = γT ((∂d+1W
1/2)T )+(∂d+1W

1/2)+γ = ∥(∂W 1/2)+γ∥2.

By Lemma 2.6 Part 2, Rγ(K) is the minimum squared-norm of a vector that ∂d+1W
1/2 maps to γ.

Let f = (∂W 1/2)+γ; the vector f is the unit γ-flow of minimum flow energy, which we now prove.
A vector v is mapped to γ by ∂W 1/2 iff W 1/2v is mapped to γ by ∂ as W 1/2 is a bijection; that

is all to say, W 1/2v is a unit γ-flow. Moreover, the flow energy of W 1/2v is

J(W 1/2v) = (W 1/2v)TW−1W 1/2v

= vTW 1/2W−1W 1/2v

= vT v

= ∥v∥2

Therefore, the minimum flow energy of a unit γ-flow is the minimum squared-norm of a vector that
∂W 1/2 maps to γ, which we previously saw was Rγ(K).

We call (∂W 1/2)+γ the minimum-energy unit γ-flow4.

4The minimum-energy unit γ-flow is unlike the optimal bounded chain [17], another minimum spanning object of
a null-homologous cycle. The optimal bounded chain of γ is (often) defined with Z2 coefficients and is the smallest set
of simplices with boundary γ; it is analogous to an s, t-path in a graph. The minimum-energy γ-flow is defined with
real coefficients and can have fractional values on simplices; it is analogous to an s, t-flow in a graph. While the weight
of the optimal bounded chain is always minimized when fewer simplices are used, the minimum minimum-energy
γ-flow will push a fraction of the flow on many chains spanning γ. Indeed, in Section B, we prove the minimum-energy
γ-flow pushes a non-zero amount of flow on each chain spanning γ.
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L
K\L
γ
p

Figure 2: Left: A 1-cycle γ with ±1 coefficients on the blue edges. Right: A unit γ-potential p
with ±1 coefficients on the red edges. If this complex is unweighted, then the potential energy of
p is 1. It can be proved that p is a minimal energy unit γ-potential 5, so Cγ(L,K) = 1

Some of the key properties of effective resistance in graphs are the series and parallel formulas
and Rayleigh Monotonicity. In Appendix B, we prove analogous results for higher-dimensional
effective resistance.

While effective resistance has previously been generalized from graphs to simplicial complexes [31,
42, 57], to our knowledge, we are the first to generalize effective capacitance from graphs to simpli-
cial complexes. Unfortunately, effective capacitance is more opaque than effective resistance, both
in graphs and simplicial complexes. The definition of effective capacitance is less intuitive than the
definition for effective resistance, and there are fewer results about effective capacitance in graphs
than effective resistance.

Before defining effective capacitance in simplicial complexes, we review the definition of effective
capacitance in graphs, which can be found in [37]. Let G be a graph such that s and t are connected
in G, and let H ⊆ G be a subgraph such that s and t are not connected in H. A unit st-potential
is a function p : V (G) → R such that p(t) = 1, p(s) = 0, and p(u) = p(v) for any two vertices u, v
in the same connected component. The potential energy of p is

∑
{u,v}∈E(G)(p(u) − p(v))2. The

effective capacitance of s and t is the minimum potential energy of any st-potential.
Our definition of effective capacitance in simplicial complexes will be analogous to the defintion

in graphs; namely, the effective capacitance of a cycle γ will be the minimum energy of a unit
γ-potential.

Definition 6. Let L be a simplicial complex, and let γ ∈ Cd−1(L) be a (d−1)-cycle that is not
null-homologous in L. A unit γ-potential in L is a (d−1)-chain p such that δd−1[L]p = 0 and
pTγ = 1.

Figure 2 shows a γ-potential in a simplicial complex.

Definition 7. Given simplicial complexes L ⊂ K with weight function w : Cd(K) → R and a
γ-potential p in L, the potential energy of p on K is

J (p) =
∑
σ∈Kd

δ[K]p(σ)2w(σ) = (δ[K]p)TW (δ[K]p).

Definition 8. Let L ⊂ K be simplicial complexes, and let γ ∈ Cd−1(L) be a (d − 1)-cycle that is
null-homologous in K. If γ is not null-homologous in L, the effective capacitance of γ in L and
K is

5The proof that p is the minimal energy unit γ-potential is analogous to the proof of Theorem 5.14. The trick to
proving this is to realize that because there is a single 2-simplex in K\L, all unit γ-potentials have the same potential
energy.
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Cγ(L,K) =

 min
p:p unit γ-potential

J (p) γ is not null-homologous

∞ γ is null-homologous

Our definition of effective capacitance in simplicial complexes matches the definition of effective
capacitance in graphs; however, this may not be obvious at first glance, as our definition of st-
potential is more general. A function p : V (G) → R is equivalent to a 0-chain p ∈ C0(H), and
the requirement that p(u) = p(v) for any two vertices u, v in the same connected component is
equivalent to saying δ0[H] = 0; however, not all chains p such that pT (s − t) = 1 satisfy p(s) = 1
and p(t) = 0. (For example, it could be the case that p(s) = 1

2 and p(t) = −1
2 .) This difference

in the definition ends up not mattering though. This is because the all-1s vectors 1 ∈ ker δ0 for
any graph. Using this fact, we can see that for any st-potential p under our definition, there is an
st-potential p′ under the previous definition with the same potential energy, namely the potential
p′ = p− p(t)1.

There is one small detail left to show. It is not obvious from the definition that a unit γ-potential
will even exist for γ. We prove this in the following lemma.

Lemma 4.3. Let L be a simplicial complex, and let γ ∈ Cd−1(L) be a cycle. Then there exists a
unit γ-potential in L if and only if γ is not null-homologous in L.

Proof. Observe that ker δd−1[L] = (im ∂d[L])⊥ as δd−1[L] = ∂d[L]T . Assume there is a γ-potential
p in L. As δ[L]p = 0, then p ∈ ker δd−1[L] = (im ∂d[L])⊥. As γT p = 1 we see that γ has a non-zero
component in (im ∂d[L])⊥, so γ ̸∈ im ∂d[L].

Alternatively, suppose that γ is not null-homologous in L. Then γ has a non-zero component
in (im ∂d[L])⊥ = ker δd−1[L]. Let q = Πker δ[L]γ, where Πker δ[L] is the projection operator onto

ker δd−1[L]. Then γT q ̸= 0 and δd−1[L]q = 0. The vector q is not necessarily a unit γ-potential as
it is not necessarily the case that γT q = 1, but the scaled vector p = 1

γT q
q is a unit γ-potential.

One interesting property of effective resistance and capacitance in graphs is that, in planar
graphs, the effective resistance between certain pair of nodes in the dual graph equals the effective
capacitance between certain pairs of nodes in the primal graph. In Appendix C, we show that an
analogous property holds for higher-dimensional embedded simplicial complexes.

4.3.2 Effective Resistance and the Spectral Gap.

In this section, we give a characterization of the spectral gap of the combinatorial Laplacian in
terms of the effective resistance of a cycle. While the proof of this lemma follows from some simple
linear algebra, the advantage of this theorem comes down to the fact that effective resistance is easier
to work with than eigenvectors of the Laplacian (in our opinion). We first relate effective resistance
to the spectral gap of the up Laplacian. We then show how this relates effective resistance to the
spectral gap of the combinatorial Laplacian. We prove this relationship for unweighted simplicial
complexes; however, the theorems also hold for weighted simplicial complexes.

Lemma 4.4. The spectral gaps of the up Laplacian Lup
d−1 and down Laplacian Ldown

d are

λmin(Ldown
d ) = λmin(Lup

d−1) = min{R−1
γ (K) : γ ∈ im ∂d, ∥γ∥ = 1}.

Proof. We first prove this is the case for the spectral gap of the up Laplacian Lup
d . We then show

the equivalence of λmin(Ldown
d ) and λmin(Lup

d−1).
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The lemma follows from some standard facts about symmetric matrices. First, because Lup
d is

symmetric, a vector x is an eigenvector of Lup
d with non-zero eigenvalue λ if and only if x is an

eigenvector of (Lup
d )+ with non-zero eigenvalue λ−1. This follows from the fact that the singular

values and vectors of a symmetric matrix are also its eigenvalues and eigenvectors. Therefore, the
smallest non-zero eigenvalue of Lup

d is the inverse of the largest non-zero eigenvalue of (Lup
d )+, or

λmin(Lup
d ) = λ−1

max((Lup
d )+) for short.

Next, we can characterize the eigenvalues of the symmetric matrix (Lup
d )+ with the Courant-

Fischer Theorem. We use a special case of the theorem, which says that λmax((Lup
d )+) =

max{xT (Lup
d )+x : ∥x∥ = 1} and xmax = arg max{xT (Lup

d )+x : ∥x∥ = 1}, where xmax is an eigenvec-
tor corresponding to λmax((Lup

d )+). The lemma follows from the fact that xmax ∈ imLup
d = im ∂d,

which is the case because xmax is the eigenvector of a non-zero eigenvalue of Lup
d .

Finally, λmin(Lup
d ) = λmin(Ldown

d−1 ) by Lemma 2.2 Part 1.

4.3.3 Effective Capacitance and the Spectral Gap.

In the previous section, we saw that the effective resistance of a unit-length cycle is always
bounded above by the inverse of the spectral gap of the combinatorial Laplacian. While we don’t
know such a bound for the effective capacitance of arbitrary cycles, we can prove such a bound for
the effective capacitance for the boundaries of simplices. This is sufficient for our analysis of the
incremental algorithm as the only cycles we consider are the boundaries of simplices.

Before proving our upper bound on the effective capacitance of a cycle, we need to prove an
upper bound on the largest singular value of the coboundary matrix.

Lemma 4.5. Let K be a simplicial complex with n0 vertices. For any d ≥ 1, the largest singular
value of the coboundary matrix δd−1[K] is σmax(δd−1) = O(

√
n0).

Proof. This follows as the squared singular values of δd−1 are the eigenvalues of the up Laplacian
δTd−1δd−1 = Lup

d−1. (This is true for any matrix of the form ATA.) The maximum eigenvalue of Lup
d−1

is known to be at most n0 by Theorem 2.4.

Theorem 4.6. Let L ⊂ K be d-dimensional simplicial complexes. Let γ ∈ Cd−1(L) be a (d − 1)-
cycle that is null-homologous in K but not in L. Assume that γ = ∂σ for a d-simplex σ /∈ L.6The
effective capacitance of γ in K is bounded above by Cγ(L,K) = O

(
n0 · λ−1

min(Ld−1[L ∪ {σ}])
)
.

Proof. We can express the constraints of a γ-potential p in the following set of linear equations:δ[L]

γT

 p =


0
0
...
1


To simplify notation, let C =

[
δ[L]T γ

]T
and b =

[
0 0 · · · 1

]T
We consider the smallest vector p which satisfies these equations, which is p = C+b. Be-

cause γ = ∂σ, we can see that C = δ[L ∪ {σ}]. Therefore, ∥p∥ = O(∥C+b∥) = O(σ−1
min(δ[L ∪

{σ}]), where σmin(δ[L ∪ {σ}]) is the smallest non-zero singular value of δ[L ∪ {σ}]. However,

we know that σmin =
√
λmin(Lup

d−1[L ∪ {σ}]) ∈ Ω(
√
λmin(Ld−1[L ∪ {σ}])). Therefore, ∥p∥ ∈

O

(√
λ−1
min(Ld−1[L ∪ {σ}])

)
.

6The theorem holds whether or not σ ∈ K.
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We now want to bound the potential energy of p. Using Lemma 4.5, we can bound ∥δ[K]p∥2 ∈
O(n0 · λ−1

min(Ld−1[L ∪ {σ}])).

4.3.4 Connecting Effective Resistance and Capacitance to Witness Sizes.

Given a string x ∈ {0, 1}nd , we show in the following two lemmas that w+(x,PK) = Rγ(K(x))
and w−(x,PK) = Cγ(K(x),K). The proofs are simple calculations following from the definitions of
effective resistance and capacitance.

Lemma 4.7. Let x ∈ {0, 1}nd be a positive instance. There is a bijection between positive witnesses
|w⟩ for x and unit γ-flows f in K(x). Moreover, the positive witness size is equal to the effective
resistance of γ in K(x); that is, w+(x,PK) = Rγ(K(x)).

Proof. Let |w+⟩ ∈ Cd(K) be a positive witness for x, so ∂d
√
W |w+⟩ = γ. We construct a unit

γ-flow f in K(x) by f =
√
W |w+⟩; f is indeed a unit γ-flow as ∂df = ∂d

√
W |w+⟩ = γ. Moreover,

|w+⟩ = W−1/2|f⟩. The flow energy of γ is

J(f) = ⟨f |W−1|f⟩
= ⟨W−1/2f |W−1/2f⟩
= ⟨w+|w+⟩
= ∥|w+⟩∥2.

Hence, the flow energy of f equals the witness size of x.
Conversely, let f be a unit γ-flow in K(x) and define the positive witness for x as |w+⟩ =

W−1/2|f⟩. The same computation in the above paragraph shows that the flow energy of f equals
the positive witness size of x.

Lemma 4.8. Let x ∈ {0, 1}nd be a negative instance. There is a bijection between negative witnesses
⟨w−| for x and unit γ-potentials p in K(x). Moreover, the negative witness size is equal to the
effective capacitance of γ in K(x); that is, w−(x,PK) = Cγ(K(x)).

Proof. Let ⟨w−| be a negative witness for x. As ⟨w| is a linear function from Cd−1(K) to R we may
view it as a (d − 1)-chain pT = ⟨w|. Since ⟨w−|γ⟩ = 1, then pTγ = 1. To show that p is a unit
γ-potential we must show that the coboundary of p is zero in K(x). By the definition of a negative
witness we have

0 = ⟨w−|∂d
√
WΠK(x)

= ⟨p|∂d
√
WΠK(x)

= ⟨δd(p)|
√
WΠK(x).

Since
√
W is a diagonal matrix and ΠK(x) restricts the coboundary to the subcomplex K(x) we

see that ⟨δd(p)|σ⟩ = 0 for any σ ∈ K(x)d. To show that the witness size of ⟨w−| is equal to the
potential energy of p we have

∥⟨w−|∂d
√
C∥2 = ⟨p∂d

√
W |p∂d

√
W ⟩

= ⟨
√
Wδd(p)|

√
Wδd(p)⟩

=
∑
σ∈Kd

⟨δd(p)|σ⟩2w(σ)

= J (p).
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Conversely, let p be a unit γ-potential for K(x) we construct a negative witness for x by setting
⟨w−| := pT . Since the coboundary of p is zero in K(x) we have ⟨δp(p)|σ⟩ = 0 for each σ ∈ K(x)d
which implies ⟨w−|∂d

√
WΠK(x) = 0 by the reasoning in the previous paragraph. Also by the

previous paragraph we have that the potential energy of p is equal to the negative witness size of
⟨w−| which concludes the proof.

From these two lemmas we obtain the main theorem of the section, the quantum query com-
plexity of γ.

Theorem 4.9. Given a d-dimensional simplicial complex K, a (d − 1)-dimensional cycle γ that
is null-homologous in K, and a d-dimensional subcomplex K(x) ⊆ K, there exists a quantum al-
gorithm deciding whether or not γ is null-homologous in K(x) with quantum query complexity

O
(√
Rmax(γ)Cmax(γ)

)
, where Rmax(γ) is the maximum finite effective resistance Rγ(L) in any

subcomplex L ⊂ K, and Cmax(γ) is the maximum finite effective capacitance Cγ(L,K) in any sub-
complex L ⊂ K.

Proof. By Theorem 4.1, the span program PK can be converted into a quantum algorithm whose

query complexity is O
(√

W+(f,PK)W−(f,PK)
)

where W+(f,PK) = maxx∈f−1(1)Rγ(K(x)) =

Rmax(γ) and W−(f,PK) = maxx∈f−1(0) Cγ(K(x),K) = Cmax(γ).

4.4 Time Efficient Implementations of the Span Program.

We have given bounds on the query complexity of null-homology testing; however, this does not
imply a bound on the time complexity of evaluating this span program, as the query complexity
does not account for the work outside of the oracle calls. In Appendix D, we describe the details
of an implementation of this algorithm. For certain special cases, we are able to analyse the time
complexity of the algorithm. We describe this special case below.

There are two obstacles to a time-efficient implementation of the span program: the weights
and the input cycle γ. The weights on the d-simplices make it difficult to implement the matrix
∂
√
W , as the weights on the simplices can be arbitrary real numbers. The input cycle γ is difficult

to create on a quantum computer as the entries of γ can also be arbitrary real numbers.
Accordingly, we can give a quantum algorithm of bounded time complexity in one particular

instance: when K is unweighted and γ is the boundary of a d-simplex. (We do not require the
d-simplex to actually appear in the complex.) While this is only a special case of the generic
null-homology testing algorithm, this is the only case we need for the incremental algorithm for
computing Betti numbers (Algorithm 1). The time complexity of this case is given in the following
theorem.

Theorem 4.10. Let K be an unweighted simplicial complex with n0 vertices, let γ ∈ Cd−1(K) a
null-homologous cycle in K, and K(x) ⊂ K be a simplicial complex. Furthermore, assume that γ
is the boundary of a d-simplex and the complex is unweighted. There is a quantum algorithm for
deciding if γ is null-homologous in K(x) that runs in time

Õ

(√
Rmax(γ)Cmax(γ)

λ̃min

n0 +
√
Rγ(K)n0

)
,

where Rmax(γ) is the maximum finite effective resistance Rγ(L) of γ in any subcomplex L ⊂ K,
Cmax(γ) is the maximum finite effective capacitance Cγ(L,L) in any subcomplex K(x), and λ̃min is
the spectral gap of the normalized up-Laplacian L̃up

d−1[K].
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4.5 Runtime of the Quantum Incremental Algorithm

In the previous section, we saw an implementation of an algorithm for testing if the boundary
of a d-simplex was null-homologous. Combined with the framework of the Incremental Algorithm
(Algorithm 1), this allows us to compute the d-Betti number.

Theorem 1.1. Let K be a simplicial complex. There is a quantum algorithm for computing the
dth Betti number βd of K in time

Õ

((√
RmaxCmax

λ̃min

n0 +
√
Rmaxn0

)
(nd + nd+1)

)
,

where

• ni is the number of i-simplices of K.

• Rmax is the maximum finite effective resistance R∂σ(L) of the boundary of any d- or (d+ 1)-
simplex σ ∈ K in any subcomplex L ⊂ K.

• Cmax are the maximum finite effective capacitance C∂σ(L,K) of the boundary of any d- or
(d+ 1)-simplex σ ∈ K in any subcomplex L ⊂ K.

• λ̃min is the minimum spectral gap of the normalized up Laplacians L̃up
d−1[K] and L̃up

d [K].

Proof. The Incremental Algorithm (Algorithm 1) incrementally adds each d and (d + 1)-simplex
σ to the simplicial complex and checks if the cycle ∂σ is null-homologous. We can use the span-
program algorithm of Theorem 4.10 to check if ∂σ is null-homologous. The theorem follows by
using this algorithm for each of the (nd + nd+1) d- and (d+ 1)-simplices.

4.6 Comparison with Existing Algorithms.

In this section, we compare our algorithm to existing algorithms for QTDA. This presentation
specifically compares our algorithm to the LGZ algorithm [48], but most of these ideas also hold
for other existing QTDA algorithms.

Input. Our algorithm makes different assumptions about how the simplicial complex is stored
compared to previous algorithms. We assume we have a list of simplices in the simplicial complex;
this is required for the incremental algorithm as we must iteratively add the simplices and test if
their boundaries are null-homologous. Compare this to existing quantum algorithms, which assume
we have a way of checking if a simplex is included in the simplicial complex.

Our algorithm assumes we have a list oracle that can return the simplices in the simplicial
complex:

Olist : |i⟩|0⟩ → |i⟩|σi⟩,

where σi is the ith d-simplex of our simplicial complex.
Compare this to the membership oracle used in other QTDA algorithms that can check

whether a simplex is in the simplicial complex:

Omemb : |σi⟩|j⟩ → |σi⟩|j ⊕ bi⟩,

where bi is a bit indicating if σi ∈ Kd.
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These oracles come with different trade-offs. The oracle Omemb does not require computing the
set of simplices in advanced, while Olist does. However, algorithms that use the membership oracle
Omemb pay for this in the time it takes to compute a uniform superposition of the d-simplices,
a costly operation leading to a factor of ζd = nd/

(
n0

d+1

)
in the runtime. Thus, our algorithm is

better suited for sparse simplicial complexes—complexes where nd <<
(

n
d+1

)
and where the list

of simplices can be computed efficiently—a family of complexes where existing QTDA algorithms
perform poorly; see the section “Runtime” below for more discussion.

Output. The LGZ algorithm estimates the dth Betti number up to an additive factor by returning

a value χd such that
∣∣∣χd − βd

dimCd(K)

∣∣∣ ≤ ϵ; the problem of computing χd has been deemed Betti

number estimation. Our algorithm instead returns the Betti number βk.

Runtime. To compare our algorithm to existing quantum algorithms, we bound the runtime of
our algorithm with respect to the spectral gap of the combinatorial Laplacian. Note that while
we can bound the runtime of our algorithm by the inverse of the spectral gap, this bound is not
necessarily tight.

Corollary 4.11. Let K be a simplicial complex with ni i-simplices. There is a quantum algorithm
for computing the dth Betti number βd in time

Õ
(

Λ
−3/2
min n

5/2
0 · (nd + nd+1)

)
where Λmin is the minimum spectral gap of Ld[L] over all subcomplexes L ⊂ K.

Proof. This follows from Theorem 1.1 by applying the bounds of Lemma 4.4, Theorem 4.6, and
Lemma 2.5 to bound Rmax, Cmax, and 1

λ̃min
respectively. The bounds on the effective resistance of

Lemma 4.4 only apply to unit vectors, so one factor of n0 is because of the fact that ∥∂σ∥ =
√
d,

so Rmax(∂σ) ≤ dΛ−1
min.

Compare this to the LGZ algorithm, which runs in time

O

(
ϵ−2λ−1

minn
4
0

√
ζ−1
d

)
where n0 is the number of vertices, ϵ is the error term, λmin is the spectral gap of the combinatorial
Laplacian, and ζd is a density term given by

ζd =
nd(
n0

d+1

) .
The density term is the ratio of the number k-simplices in the K to number of k-simplices in the
complete complex on n0 vertices, which may be exponentially small. For example, when K is sparse,
meaning that the number of d-simplices is polynomial in the number of vertices, the density may

be exponentially small with respect to d. Specifically, if ζd = Ω
(
n
O(1)
0 /nd+1

0

)
= Ω

(
1/n

O(d+1)
0

)
,

then the runtime of LGZ is
O
(
ϵ−2λ−1

minn
O(d+1)
0

)
.

Compare this to our algorithm, which in this case has runtime

Õ
(

Λ
−3/2
min n

O(1)
0

)
.
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In this case, our algorithm has a better asymptotic dependence on the size of the complex as it
avoids the factor of

(
n0

d+1

)
. This factor of

(
n0

d+1

)
shows up in many of the alternatives to the LGZ

algorithm, so our algorithm has a more favorable dependence on n0 compared to these algorithms
as well. Additionally, we note that the term Λmin in our algorithm and λmin in the LGZ algorithm
are similar but not directly comparable. See the following section.

Effective Resistance and Capacitance vs. Spectral Gap. Our algorithm is parameterized
by the maximum effective resistance and capacitance of all subcomplexes of a simplicial complex
and the square root of the inverse of spectral gap of the simplicial complex, whereas previous
QTDA algorithm are only parameterized by the inverse of the spectral gap of the simplicial complex.
Although for a fixed complex, effective resistance and capacitance are upper bounded by the inverse
of the spectral gap, the fact that our algorithm is parameterized by the maximum effective resistance
and capacitance over all subcomplexes means that the runtime of our algorithm is not entirely
comparable to the runtime of existing QTDA algorithms. It is possible are complexes where the
effective resistance and capacitance in subcomplexes are significantly lower than the spectral gap
of the entire complex, and complexes where the effective resistance or capacitance of a cycle in
a subcomplex is larger than the spectral gap of the entire complex. The complete complex is an
example of the second case, as it has the maximal possible spectral gap of n0.

Randomized Order for the Incremental Algorithm. Building on the previous point, while
our algorithm is parameterized by the maximum effective resistance and capacitance in various
subcomplexes, our algorithm can also incrementally add the simplices in any order. This is po-
tentially beneficial as a simplex may have smaller effective resistance or capacitance in one order
than another. Of course, we likely will not know in advance whether or not a particular order of
the simplices results in less or greater resistance and capacitance. However, we still may able to
use this fact to our advantage, as we could run our algorithm multiple times with different orders
to gain confidence that our Betti number computations are accurate, which is not the case with
previous QTDA algorithms.

5 Bounds on Effective Resistance and Capacitance.

In this section, we provide upper bounds on the resistance and capacitance of a cycle γ in an
simplicial complex K. Throughout this section, all simplicial complexes are unweighted.

Our upper bounds are polynomial in the number of d-simplices and the cardinality of the torsion
subgroup of the relative homology groups. In particular, our bounds on resistance and capacitance
are dependent on the maximum cardinality of the torsion subgroup of the relative homology group
Hd−1(L,L0,Z), where L ⊂ K is a d-dimensional subcomplex and L0 ⊂ L is a (d−1)-dimensional
subcomplex. In the worst case, our upper bounds are exponential.

In Theorem 5.9 we provide an example of a simplicial complex containing a cycle γ whose
effective resistance is exponential in the number of simplices in the complex. It is important to
reiterate that our bounds are in terms of the torsion of the relative homology groups, not the
torsion of the (non-relative) homology groups. The simplicial complex we provide has no torsion
in its homology groups, only torsion in its relative homology groups.

5.1 Upper Bounds

Our upper bounds rely on a change of basis on the boundary matrix called the Smith normal
form which reveals information about the torsion subgroup of Hd−1(K,Z). We state the normal
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form theorem below.

Theorem 5.1 (Munkres, Chapter 1 Section 11 [54]). There are bases for Cd(K) and Cd−1(K) such
that the matrix for the boundary operator ∂d : Cd(K,Z)→ Cd−1(K,Z) is in Smith normal form,
i.e.

∂̃d =

[
D 0
0 0

]
where D is a diagonal matrix with positive integer entries d1, . . . , dm such that each di divides di+1

and each 0 is a zero matrix of appropriate dimensionality. The normal form of ∂d satisfies the
following properties:

1. The entries d1, . . . , dm correspond to the torsion coefficients of Hd−1(K,Z) ∼= Zβd ⊕ Zd1 ⊕
· · · ⊕ Zdm (where Z1 = 0),

2. The number of zero columns is equal to the dimension of ker(∂d).

Moreover, the boundary matrix ∂ in the standard basis can be transformed to ∂̃ by elementary row
and column operations. If ∂ is square, these operations multiply det ∂ by ±1.

Using Theorem 5.1, we obtain an upper bound on the determinants of the square submatrices of
the boundary matrix ∂d[K] in terms of the relative homology groups of K. Let L be d-dimensional
subcomplex of K, and let L0 be a (d−1)-dimensional subcomplex of K. The relative boundary
matrix ∂d[L,L0] is the submatrix of ∂d obtained by including the columns of the d-simplices in
L and excluding the rows of the (d−1)-simplices in L0. With the relative boundary matrices, one
can define the relative homology groups as Hd(L,L0,Z) = ker ∂d[L,L0]/ im ∂d+1[L,L0]. More
information on the relative boundary matrix can be found in [14]. We denote the cardinality of the
torsion subgroup of the relative homology group Hd−1(L,L0,Z) by T (L,L0). Similarly, we denote
the maximum T (L,L0) over all relative homology groups as Tmax(K).

Lemma 5.2. Let ∂d[L,L0] be a k× k square submatrix of ∂d constructed by including columns for
the d-simplices in L and excluding rows for the (d−1)-simplices in L0. The magnitude of the deter-
minant of ∂d[L,L0] is bounded above by the cardinality of the torsion subgroup of Hd−1(L,L0,Z),
i.e

|det (∂d[L,L0]) | ≤ T (L,L0).

Proof. Without loss of generality, we assume that det(∂d[L,L0]) ̸= 0; if det(∂d[L,L0]) = 0, the
bound is trivial. Since ∂d[L,L0] is a non-singular square matrix, its normal form ∂̃d[L,L0] is a
diagonal matrix D = diag(d1, . . . , dk). The determinant is equal to ±

∏k
i=1 di and by Theorem 5.1

the torsion subgroup of Hd−1(L,L0) is Zd1⊕· · ·⊕Zdk which has cardinality T (L,L0) =
∏k

i=1 di.

5.1.1 Upper Bounds on Effective Resistance

We are now ready to upper bound the effective resistance of a cycle in a simplicial complex.

Theorem 5.3. Let K be a d-dimensional simplicial complex and γ a unit-length null-homologous
(d−1)-cycle in K. Let n = min{nd−1, nd}. The effective resistance of γ is bounded above by
Rγ(K) ∈ O

(
n2 · Tmax(K)2

)
.

Proof. First, we remove d-simplices from K to create a new complex L such that ker(∂d[L]) = 0
and im ∂d[K] = im ∂d[L]. Theorem B.3 proves that removing d-simplices only increases the effective
resistance, so Rγ(K) ≤ Rγ(L). As ker(∂d[L]) = 0, there is a unique unit γ-flow f ∈ Cd−1(L) which
implies Rγ(L) = ∥f∥2. Let n ≤ nd denote the number of d-simplices in L.
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The matrix ∂d[L] has full column rank, so we can find a non-singular n×n square submatrix of
∂d[L]; call this submatrix B. Let L0 be the (d−1)-dimensional subcomplex that contains the (d−1)-
simplices corresponding to rows excluded from B; B is the relative boundary matrix ∂d[L,L0]. We
have that Bf = c, where c is the restriction of γ to the rows of B. Observe that ∥c∥ ≤ ∥γ∥ = 1

We will apply Cramer’s rule to upper bound the size of f . By Cramer’s rule we have the equality

f(σ) =
det(Bσ,c)

det(B)

where Bσ,c is the matrix obtained by replacing the column of B indexed by σ with the vector c.
Since det(B) is integral, |det(B)| ≥ 1, so we drop the denominator and focus on the inequality
|f(σ)| ≤ |det(Bσ,c)|. We bound |det(Bσ,c)| by its cofactor expansion,

|det(Bσ,c)| =

∣∣∣∣∣
nd∑
i=1

(−1)i · ci · det(Bc,i
σ,c)

∣∣∣∣∣
≤

nd∑
i=1

|ci| · Tmax(K)

= ∥c∥1 · Tmax(K)

= O
(√
n · Tmax(K)

)
where Bc,i

σ,c denotes the submatrix obtained by removing the column c and removing the ith row
and ci denotes the ith component of c. The first inequality comes from Lemma 5.2, as Bc,i

σ,c is the
relative boundary matrix ∂d[L \ {σ},L0 ∪ σi], where σi is the (d−1)-simplex corresponding to the
ith row of B. The factor of

√
n comes from the fact that ∥c∥1 ≤

√
n∥c∥2 and ∥c∥2 ≤ 1. Finally, we

compute the flow energy of f as

J(f) =
∑
σ∈Ld

f(σ)2

≤
n∑

i=1

n · Tmax(K)2

= O
(
n2 · Tmax(K)2

)
.

The effective resistance of γ is the flow energy of f , so the result follows.

If L ⊂ K, then the boundary matrix ∂d[L] is a submatrix of ∂d[K]. In particular, Tmax(L) ≤
Tmax(K). Therefore, the proof of Theorem 5.3 gives an upper bound on the effective resistance for
any subcomplex L ⊂ K.

Corollary 5.4. Let L ⊂ K be a d-dimensional simplicial complex and γ a null-homologous (d−1)-
cycle in L. Let n = min{nd−1[L], nd[L]}. The effective resistance of γ in L is bounded above by
Rγ(L) = O

(
n2 · Tmax(K)2

)
.

In Section 5.1.3, we give an upper bound on relative torsion, which implies an upper bound on
the effective resistance purely in terms of the size of the complex.
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5.1.2 Upper Bounds on Capacitance.

We now provide an upper bound for the effective capacitance of a cycle. While upper bounds on
the effective resistance only depended on the norm of the cycle, upper bounds on the capacitance of
the cycle are not. Therefore, we consider the special case where γ is the boundary of a d-simplex.
This is a natural assumption as these are exactly the type of cycles considered in the incremental
algorithm for computing Betti numbers (Algorithm 1). While we only prove this special case, we
note that our proof could be adapted to bound the effective capacitance of a cycle whose entries
have constant upper and lower bounds.

Theorem 5.5. Let L ⊂ K be d-dimensional simplicial complexes. Let γ ∈ Cd−1(L) be a (d − 1)-
cycle that is null-homologous in K but not in L. Let n = min{nd−1, nd}. Assume that γ =
∂σ for a d-simplex σ /∈ L. The effective capacitance of γ in K is bounded above by Cγ(L,K) ∈
O
(
n · n0 · Tmax(K)2

)
.

Proof. Let p be a γ-potential. We upper bound the potential energy of p. By definition, δ[L]p = 0
and γT p = 1. We can express these constraints as the linear systemδ[L]

γT

 p =


0
0
...
1


We first remove linearly-dependent columns from this linear system until this system has full
column rank. Columns of the matrix are indexed by (d−1) simplices of L, and rows are indexed by
d-simplices of L. Removing columns from δ[L] changes it to the relative coboundary matrix δ[L,L0]
where L0 is the (d − 1)-subcomplex corresponding to the columns that were removed. Removing
linearly-dependent columns does not change the image of the system of equation, so there is still a
solution r, i.e. δ[L,L0]

cT

 r =


0
0
...
1


where c is the subvector of γ after removing the columns. The vector r is not a γ-potential as it
is a vector in Cd−1(L,L0), not Cd−1(L). However, we can extend r to be a γ-potential by adding
zeros in the entries indexed by L0. Adding zero-valued entries preserves the length of r.

We now want to remove rows from this matrix so that it has full row rank. Topologically,
removing rows corresponds to removing d-simplices from the complex L to create a new complex
L1. Note that we must always include the row c to have full row rank; otherwise, r would be a
non-zero vector in the kernel of this system, meaning the system does not have full rank. Removing
these rows gives the linear system δ[L1,L0]

c

 r =


0
0
...
1

 .
Let C =

[
δ[L1,L0]T cT

]T
and b =

[
0 0 · · · 1

]T
. Note that C is an square matrix of size (say)

m×m, where m ≤ n+ 1.
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We use Cramer’s rule to bound the size of ∥r∥. By Cramer’s rule, ri, the ith entry of r, is

ri =
det(Ci,b)

det(C)
.

where Ci,b is the matrix obtained by replacing the ith column with b.
We first lower bound |det (C)|. As C is a full-rank integral matrix, then |det (C)| ≥ 1. We

now upper bound | det(Ci,b)|. We calculate det(Ci,b) with the cofactor expansion on the column
replaced by b. As b has 1 in its last entry and 0s elsewhere, the cofactor expansion gives det(Ci,b) =

±1 · det(Ci,c
i,b ) where Ci,c

i,b is the matrix where we dropped the ith column and the row c from Ci,b.

The matrix Ci,c
i,b is a square submatrix of δ[K], so we can bound | det(Ci,b)| ≤ Tmax(K). Thus,

ri = det(Ci,b)/det(C) ≤ Tmax(K) and

∥r∥ =

√√√√ m∑
i=1

r2i

≤
√
m · Tmax(K)2

≤
√
n · Tmax(K)2

=
√
n · Tmax(K)

The potential energy of r is ∥δ[K]r∥2. We can use Lemma 4.5 to obtain the bound ∥δ[K]r∥2 =
O
(
n · n0 · Tmax(K)2

)
.

5.1.3 Upper Bound on Relative Torsion.

To conclude this section, we provide an upper bound on Tmax(K).

Lemma 5.6. Let K be a simplicial complex. Let n = min{nd−1, nd}. Then the maximum rank of
any (d− 1)-dimensional relative torsion group of K is Tmax(K) ∈ O((

√
d+ 1)n).

Proof. By the proof of Lemma 5.2, the quantity Tmax(K) is the absolute value of the determinant
of some submatrix of ∂d. We therefore bound the determinant of such a submatrix. We prove this
bound using Hadamard’s Inequality : the determinant of an m×m matrix B is upper-bounded
by the product of the norms of its columns.

Consider a square, m×m submatrix B of ∂d. We know that m ≤ n. Moreover, any column of
B has norm bounded above by

√
d+ 1. This bound follows from the fact that each column of ∂d

has norm exactly
√
d+ 1; each column has d+ 1 nonzero entries, each of which is ±1. The bound

of the lemma follows by Hadamard’s Inequality.

Lemma 5.6 immediately implies the corollaries to Theorem 5.3 and Theorem 5.5.

Corollary 5.7. Let K be a d-dimensional simplicial complex and γ a unit-length null-homologous
(d−1)-cycle in K. Let n = min{nd−1, nd}. The effective resistance of γ is bounded above by
Rγ(K) ∈ O

(
n2(d+ 1)n

)
.

Corollary 5.8. Let L ⊂ K be d-dimensional simplicial complexes. Let γ ∈ Cd−1(L) be a (d − 1)-
cycle that is null-homologous in K but not in L. Let n = min{nd−1, nd}. Assume that γ = ∂σ
for a d-simplex σ /∈ Ld. The effective capacitance of γ in K is bounded above by Cγ(L,K) ∈
O (n · n0 · (d+ 1)n).
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Figure 3: Left: Stellar subdivision of a triangle. Middle and Right: Top and bottom view of the
stellar prism of a triangle with the tetrahedra pushed apart.

5.2 Lower Bounds.

5.2.1 Lower Bounds on Effective Resistance

At the end of the previous section, we gave an exponential upper bound on the effective re-
sistance of a (d − 1)-cycle in a simplicial complex (Corollary 5.7). In this section, we describe
a d-dimensional simplicial complex Bnd with a (d − 1)-cycle γ with exponentially-large effective
resistance with respect to the size of the complex.

Theorem 5.9. Let d, n be positive integers. There is a constant cd ≥ 1 that depends only on d
and a d-dimensional simplicial complex Bnd with nd ∈ Θ((d + 1)3n) d-simplices and a unit-length
null-homologous cycle γ ∈ Cd−1(Bnd ) such that Rγ(Bnd ) ∈ Θ(cnd

d ).

The building block. Our simplicial complex will be obtained by gluing together multiple in-
stances of the same “building block” Bd. A formal description of Bd is given in Appendix E;
here, we give an intuitive description of the complex. Let ∆d denote the closure of the d-simplex
σ = {v0, . . . , vd}, and let ∂∆d denote the (d − 1)-dimensional simplicial complex ∆d \ {σ}. Our
construction starts with a triangulation of the space ∂∆d × [0, 1] that we call the stellar prism.
The “bottom copy” ∂∆d × {0} is triangulated like the original complex ∂∆d, and the “top copy”
∂∆d ×{1} is triangulated with the stellar subdivision, the subdivision that adds a vertex to the
center of each (d− 1)-simplex. See Figure 3. The relevant property of this triangulation is that the
bottom copy has d + 1 (d − 1)-simplices, and the top copy has d · (d + 1) (d − 1)-simplices. The
building block Bd is obtained from this triangulation by identifying the vertex in the center of
each (d− 1)-simplex τ × {1} with the unique vertex in σ × {1} \ τ × {1}, the unique vertex in the
set σ × {1} that is not a vertex of the simplex τ × {1}. See Figure 4.

When we identify the vertices, each (d − 1)-simplex in the top of the stellar prism is replaced
by one of the (d− 1) faces of σ×{1}. Moreover, this is replacement is d-to-1, meaning each face of
σ × {1} replaces a (d− 1)-simplex exactly d times, or informally, each (d− 1)-simplex “appears d
times” in the top copy of Bd. Of course, this is not literally true, as a simplicial complex can only
contain a single copy of each simplex. However, something to this effect is true. Namely, there is a
d-chain f ∈ Cd(Bd) whose boundary assigns value ±1 to each (d− 1)-simplex in the bottom copy
and value ±d to each (d− 1)-simplex in the top copy. The key properties of the building block Bd

are summarized in the following lemma.

Lemma 5.10. Let σ = {v0, . . . , vd} be a set. There is a d-dimensional simplicial complex Bd with
vertices σ × {0, 1} such that

1. Bd has Θ((d+ 1)3) d-simplices.
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Figure 4: The complex B32. Recall that the vertices of B32 are of the form (vi, j) for 0 ≤ i ≤ 2 and
0 ≤ j ≤ 3; colors in the figure denote the second coordinate of the vertices. Vertices with the same
label are identified.

2. there is a d-chain f ∈ Cd(Bd) such that

(i) ∂f = ∂(σ × {0}) + d · ∂(σ × {1})
(ii) ∥f∥2 ∈ Ω((d+ 1)3)

Note that neither of the simplices σ × {0} or σ × {1} are in Bd; however, all of their faces are in
the complex, so the boundary of these simplices are well-defined.

The total complex. The complex Bnd is obtained by gluing together n copies of Bd. We describe
this gluing inductively on n. The vertices of Bnd are σ×{0, . . . , n}. The base case B0d is the complete
complex on the vertices σ×{0}. Inductively, the complex Bnd is obtained from Bn−1

d by identifying
the vertices σ×{n− 1} of Bn−1

d with the vertices σ×{1} of a copy of Bd. We will denote this copy
of Bd as Bn

d and the vertices σ × {0} of Bn
d as σ × {n}. See Figure 4.

The key property of Bnd is that is has an exponentially-large chain with constant-sized boundary.

Lemma 5.11. Let d ≥ 1 and n ≥ 1. There is a d-chain yn ∈ Cd(Bnd ) such that

1. ∥yn∥2 ∈ Ω(d2n(d+ 1))

2. ∥∂yn∥2 = d+ 1

Proof. We construct this chain by induction on n. The chain yn will have ∂yn = ∂(σ × {n}). For
the base case n = 0, the chain y0 = σ × {0} clearly has this property.

For the inductive case, recall from Lemma 5.10 that there is a d-chain f ∈ Cd(Bd) such that
∂f = ∂(σ×{0})+d·∂(σ×{1}). Let fn denote this chain inBn

d . We define the chain yn := fn−d·yn−1.
We now verify that yn has boundary ∂(σ × {n}).

∂yn =∂fn − d · ∂yn−1

=∂(σ × {n}) + d · ∂(σ × {n− 1})− d · ∂(σ × {n− 1}
=∂(σ × {n})

It is clear that ∥∂yn∥2 = d + 1, so we just need to lower bound ∥yn∥2. We prove that ∥yn∥2 ∈
Ω(d2n(d + 1)) by induction. For the base case of n = 1, we know that ∥y1∥2 ∈ Ω((d + 1)3) by
Lemma 5.10. For the inductive case, we can see that fn ⊥ yn−1 as these chains are supported on
different sets of simplices. Therefore, ∥yn∥2 = ∥fn∥2 + d2 · ∥yn−1∥ ∈ Ω(d2n(d+ 1)).

Lemma 5.11 shows that Bnd has an exponentially-large d-chain f with constant-sized boundary.
If we can show that ker ∂d = 0, this will prove that ∂f has exponentially-large effective resistance,
as f will be the only d-chain with boundary ∂f .
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Corollary 5.12. The kernel of the boundary matrix ∂d[Bnd ] is trivial, i.e. ker ∂d[Bnd ] = 0.

Proof. Lemma F.3 in Appendix F shows that Bnd collapses to a (d − 1)-dimensional subcomplex;
call this subcomplex L. This implies that Bnd is homotopy equivalent to L, so in particular, the
d-dimensional homology Hd(Bnd ) = 0. As Bnd is d-dimensional, then im ∂d+1[Bnd ] = 0, so the only
way that Hd(Bnd ) can equal 0 is if ker ∂d[Bnd ] = 0.

Proof of Theorem 5.9. Our cycle is the normalized cycle γ = ∂yn/∥∂yn∥ where yn is the d-chain
from Lemma 5.11. We know that ∥yn∥2/∥∂yn∥2 ∈ Ω(d2n). Moreover, we know that ker ∂d = 0 by
Corollary 5.12. Therefore, we conclude that effective resistance Rγ(Bnd ) ∈ Θ(d2n).

Now we need to restate this bound in terms of the number of d-simplices of Bnd . Each copy
of Bd has Θ((d + 1)3) d-simplices. Therefore, the entire complex Bnd has nd = Θ(n · (d + 1)3)
d-simplices. If we substitute nd into our bound, we find that the effective resistance is bound below
by O((d+ 1)2nd/c·(d+1)3) for some constant c. Therefore, the constant in the theorem statement is
cd = (d+ 1)2/c·(d+1)3 .

Related Work. Variants of this construction are sometimes called the Iterated Mapping Cylinder
and have been used as a worst-case construction for other topological properties like torsion [56],
homotopy [21], or embeddability [7, 22]. However, ours is the first work showing these complexes
have a cycle with exponentially-large effective resistance (or exponentially-small spectral gap, as
we will see later.) We were specifically inspired by the work of Newman [56].

However, our construction is more efficient than previous constructions of the Iterated Mapping
Cylinder in terms of the number of d-simplices; this is why we dedicate several pages in the appendix
to this construction. As an example, the building block in Newman’s construction is the iterated
suspension of the Möbius band, and the number of d-simplices in the suspension grows exponentially
with the dimension d. Comparatively, the number of d-simplices in our building block only grows
polynomially with the dimension. Additionally, our construction has a cycle with ±1 coefficients
that is homologous to a cycle with ±d coefficients; in contrast, previous works have a cycle with
±1 coefficients that is homologous to a cycle with ±2 coefficients. Both of these properties result
in a larger constant cd in Theorem 5.9. It is an open question if there is a simplicial complex with a
cycle whose effective resistance exactly matches the constant of the lower bound, i.e. cd ∈ Θ(d+1).

5.2.2 Lower Bounds on Capacitance.

In this section, we describe a pair of nested simplicial complexes that have a cycle with expo-
nentially large effective capacitance. This complex will be built from the same building block as
the complex for lower bounding effective resistance, but the simplicial complex will built by gluing
together the building blocks in slightly different ways.

Recall that the building block is a simplicial complex Bd with vertices σ × {0, 1}, where σ =
{v0, . . . , vd} is a d-simplex. For a natural number n, we recursively construct the simplicial complex
Qn

d . The simplicial complex Qn
d is obtained by gluing together n copies of Bd. The vertices of Qn

d

will be denoted σ × {0, . . . , n}. The base case Qn
d is the complete complex on the vertices σ × {0}.

Inductively, the complex Qn
d is obtained from Qn−1

d by identifying the vertices σ×{n− 1} of Qn−1
d

with the vertices σ × {0} of a copy of Bd.7We will denote this copy of Bd as Bn
d and the vertices

σ × {1} as σ × {n}. The simplicial complex Pn
d is defined Qn−1

d minus the simplex σ × {0}.
7It is worth comparing Qn

d to the simplicial complex Bn
d from the bounds on effective resistance. Both complexes

are obtained by identifying vertices of copies of the building block Bd, but the identifications are made in different
ways. When a building block is added to Bi

d to form Bi+1
d , its “top” σ × {1} is identified with σ × {i}. When a
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We will prove that the cycle γ = ∂(σ × {n} has exponentially large capacitance in Pn
d ⊂ Qn

d .
In order for γ to have finite capacitance, the cycle γ must be null-homologous in Qn

d but not
null-homologous in Pn

d . We prove this in the following lemma.

Lemma 5.13. Let Pn
d and Qn

d as described above. Consider the chain ∂(σ × {n}) ∈ Cd(Pn
d ).

1. The (d− 1)-chain ∂(σ × {n}) + (−1)n−1 1
dn∂(σ × {0}) is null-homologous in Pn

d .

2. The (d− 1)-chain ∂(σ × {n}) is null-homologous in Qn
d .

3. The (d− 1)-chain ∂(σ × {n}) is not null-homologous in Pn
d .

Proof. Proof of Part (1) We will prove that the cycle ∂(σ×{i})+ 1
di
∂(σ×{0}) is null-homologous in

Qi
d by induction on i. Specifically, we will find a d-chain yi such that ∂yi = ∂(σ×{i})+ 1

di
∂(σ×{0}).

For each copy of the building block Bi
d, let fi ∈ Cd(Bi

d) be the d-chain guaranteed by Lemma 5.10
such that ∂fi = ∂(σ × {i − 1}) + d · ∂(σ × {i}). For the base case of i = 1, the d-chain y1 = 1

df1.
Inductively, we define the chain yi = 1

dfi −
1
dyi−1. We can verify that yi has the claimed boundary

as

∂yi =
1

d
∂fi −

1

d
∂yi−1

=∂(σ × {i}) +
1

d
∂(σ × {i− 1})− 1

d
∂(σ × {i− 1}) + (−1)i−1 1

di
∂(σ × {0})

=∂(σ × {i}) + (−1)i−1 1

di
∂(σ × {0})

Proof of Part (2) As the simplex (σ × {0}) ∈ Qn
d , then the chain yn + (−1)n 1

dn · (σ × {0})
obviously has boundary ∂(σ × {n}).

Proof of Part (3) To prove that ∂(σ × {n}) is not null-homologous in Pn
d , we will use two

lemmas we prove in the appendix. Lemma F.4 shows that Pn
d collapses to a (d − 1)-dimensional

subcomplex—call it L—containing the support of ∂(σ × {n}). Lemma F.2 shows that for nested
complexes L ⊂ K such that K collapses to L, a cycle is null-homologous in L if and only if it is
null-homologous in K. As ∂(σ × {n}) is not null-homologous in L (L is (d − 1)-dimensional, so
im ∂d[L] = 0), then ∂(σ × {n}) is not null-homologous in Pn

d either.

Theorem 5.14. Let d, n be positive integers. There is a pair of nested d-dimensional simplicial
complexes Pn

d ⊂ Qn
d with nd ∈ Θ((d + 1)3n) d-simplices, a unit-length null-homologous cycle γ ∈

Cd−1(Qn
d ), and a constant cd ≥ 1 that depends only on d such that Cγ(Pn

d ,Qn
d ) ∈ Θ(cnd

d ).

Proof. The complexes Pn
d and Qn

d are the complexes described in the preceding paragraphs. The
cycle γ = ∂(σ×{n})/

√
d+ 1, where

√
d+ 1 is a normalization factor. We must show that any unit

γ-potential p has exponentially-large potential energy.
Let p be any unit γ-potential in Pn

d . We know that γT p = 1 and δd−1[Pd
n]p = 0. As δd−1[Pd

n] =
∂Td [Pd

n], the second condition is equivalent to saying that pT b = 0 for any vector b ∈ im ∂d[Pn
d ].

Lemma 5.13 Part 1 proves that ∂(σ×{n})+(−1)n−1d−n∂(σ×{0}) ∈ im ∂d[Pn
d ], so the previous two

facts imply pT
(
∂(σ×{n})+(−1)n−1d−n(∂(σ×{0}))

)
= 0. As pT∂(σ×{n}) =

√
d+ 1 and pT

(
∂(σ×

building block is added to Qi
d to form Qi+1

d , its “bottom” σ × {0} is identified with σ × {i}. It is easiest to see
the difference between Bn

d and Qn
d by considering the cycle ∂(σ × {n}) in both complexes. The unique d-chain

f ∈ Cd(Bn
d ) with boundary ∂(σ × {n}) assigns exponentially-large coefficients to some d-simplices. In contrast, the

unique d-chain f ∈ Cd(Qn
d ) assigns exponentially-small coefficients to some d-simplices. (This is a corollary to the

proof of Lemma 5.13.)
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{n}) + (−1)n−1d−n(∂(σ × {0}))
)

= 0, then we conclude that pT∂(σ × {0}) = (−1)n−1dn/
√
d+ 1.

Moreover, as the only d-simplex in Qn
d that is not in Pn

d is σ×{0}, then the fact that δd−1[Pn
d ]p = 0

implies that the potential energy ∥δd−1[Qn
d ]p∥2 =

(
pT∂(σ × {0})

)2
= Ω(d2n).

This shows that p has exponentially-large potential energy with respect to n. By the same
argument as in the proof of Theorem 5.9, we can show that p also has exponentially-large potential
energy with respect to nd, but for a different (but constant) base of the exponent cd.

6 Bounds on the Spectral Gap

Our lower and upper bounds on effective resistance imply lower and upper bounds on the
spectral gap of the combinatorial Laplacian. This is because the spectral gap is the inverse of
the maximum effective resistance of all unit-length, null-homologous cycles, a fact we proved in
Lemma 4.4. Therefore, a corollary of Theorem 5.9 is that the spectral gap of the combinatorial
Laplacian can be exponentially-small in the worst-case. This resolves one of the most important
open questions in the field of Quantum Topological Data Analysis and shows that Betti Number
Estimation algorithms must run for an exponentially-long time to exactly compute Betti numbers.

6.1 Exponentially-small spectral gap.

Based on this connection between the spectral gap and effective resistance of Lemmas 4.4 and
2.3, we can derive lower and upper bounds on the spectral gap of the d-combinatorial Laplacian
as corollaries of the upper and lower bounds on the effective resistance (Corollary 5.7 and The-
orem 5.9). While lower bounds on the spectral gap were previously known (see for example [22,
Proof of Theorem 1.2]), one advantage of our proof is that it provides a necessary condition for
large spectral gap, namely the existence of a subcomplex with exponentially-large relative torsion.

Theorem 1.2. Let K be a simplicial complex. Let ni be the number of i-simplices of K. Let
n = max{min{nd−1, nd},min{nd, nd+1}}. Then the spectral gap λmin(Ld[K]) ∈ Ω

(
1

n2dn

)
.

Theorem 6.1. Let d, n ≥ 1. There is a d-dimensional simplicial complex Bnd with nd ∈ Θ((d +
1)3 · n) d-simplices and a constant cd ≥ 1 that depends only on d such that the spectral gaps of
Ld−1[Bnd ] and Ld[Bnd ] are O( 1

c
nd
d

).

We remark that we can also derive lower bound of the spectral gap in terms of relative torsion
as a corollary to Theorem 5.3. This implies bounded spectral gap for simplicial complexes with
no relative torsion, as remarked upon by Friedman [23, Theorem 7.2] in the case of orientable
d-manifolds.

6.2 Many Small Eigenvalues.

Corollary 6.1 shows there is a simplicial complex with a single small eigenvalue. It is natural
to ask whether there is a bound on the number of very small eigenvalues a simplicial complex
can have. This is relevant to QTDA algorithms that work by counting the number of eigenvalues
smaller than a given threshold. Here, we provide a complex Mn

d with a polynomial number of
exponentially-small eigenvalues.

Corollary 6.2. Let n, d ≥ 1. There exists a simplicial complex Mn
d with nd ∈ Θ((d + 1)3 · n)

d-simplices and a constant cd > 1 that depends only on d such that both Ld−1[Mn
d ] and Ld[Mn

d ]
have Ω(

√
nd) eigenvalues of size O( 1

c
√
nd

d

).
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Proof of Theorem 6.2. This follows from Part 2 of Lemma 2.2 relating the spectrum of a complex
to the spectra of its connected components. We define the complex Mn

d to be nd disjoint copies of
the Bnd of Corollary 6.1. The complexMn

d has n2d d-simplices and nd eigenvalues of size O( 1
c
nd
d

).

6.3 Clique-Dense Complexes.

Existing QTDA algorithms perform best when the simplicial complex is clique-dense, meaning
that the simplicial complex has close to the maximal number of d-simplices, i.e nd ∼

(
n0

d+1

)
; However,

the simplicial complex we constructed in Theorem 6.1 is sparse: it only has nd ∈ Θ((d + 1)2n0)
d-simplices. Therefore, Theorem 6.1 does not rule out the possibility that clique-dense complexes
avoid worst-case spectral gap.

However, in this section, we show that we can extend the construction of Theorem 6.1 to clique-
dense complexes (at the expense of making the constant cd of the exponent smaller.) To do this,
we use a probabilistic coloring argument of Newman [56] that reduces the number of vertices of a
simplicial complex while preserving the number of d-simplices and the Laplacian.

We begin with definitions. A coloring of a simplicial complex is a map on its vertices c : K0 →
N. The pattern complex of a simplicial complex K with coloring c is the simplicial complex
Kc = {{c(v) : v ∈ σ} : σ ∈ K}; intuitively, the pattern complex of K is the simplicial complex
obtained by identify all vertices of K of the same color and identifying all simplices whose vertices
have the same set of colors. While a simplex in K may be mapped to a lower-dimensional simplex
in the pattern complex Kc if two of its vertices are the same color, we are only considered with
colorings where this does not happen. A proper coloring of a d-dimensional simplicial complex
K is a coloring c : K0 → N such that (1) the endpoints of each edge in K are different colors and
(2) {c(v) : v ∈ σ1} ≠ {c(v) : v ∈ σ2} for any distinct (d− 1)-simplices σ1, σ2 ∈ K. Note that for a
proper coloring, condition (1) guarantees that each simplex in K corresponds to a simplex of the
same dimension in Kc. Additionally, K and Kc have the same set of (d− 1) and d-simplices up to
recoloring. Proper colorings are relevant to our paper as they preserve the spectral gap.

Lemma 6.3. Let K be a d-dimensional simplicial complex and let c be a proper coloring of K.
Then λmin(Lup

d−1[K]) = λmin(Lup
d−1[Kc])

Proof. This follows as K and Kc have the same set of (d − 1) and d-simplices up to recoloring, so
the boundary maps ∂d[K] and ∂d[Kc] are the same up to the signs on the simplices; however, the
spectrum of the up Laplacians Lup

d−1[K] and Lup
d−1[Kc] are unaffected by different orientations of the

simplices ([24, Theorem 4.1.1]), so the lemma follows.

Newman’s method also requires bounds on a generalized notion of degree. For a d-dimensional
simplicial complex K and natural numbers 0 ≤ i < j ≤ d, define ∆i,j(K) = maxσ∈Ki |{τ ∈ Kj : σ ⊂
τ}| and ∆(K) = max1≤i<j≤d ∆i,j(K). Newman used a probabilistic argument to show that for a
d-dimensional simplicial complex K there was always a proper coloring with a bounded number of
colors.

Lemma 6.4 (Lemma 3, Newman [56]). Let K be a d-dimensional simplicial complex such that
∆(K) ≥ 4. Then there is a proper coloring c of K with at most 18(∆(K) + 1)6d6 d

√
n0 colors.

This implies the following corollary of our bound on the spectral gap.

Theorem 1.3. Let d, n ≥ 1. There are constants cd, κd that depends only on d and a d-dimensional
simplicial complex Cnd with nd = Ω(κd

(
n0

d

)
) d-simplices such that the spectral gaps λmin(Ld−1[Cnd ]),

λmin(Ld[Cnd ]) ∈ O( 1
c
nd
d

).
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Proof. This is a corollary to Theorem 6.1, Lemma 6.3, and Lemma 6.4. The simplicial complex Cnd
is a pattern complex of a coloring c of the complex Bnd from Theorem 6.1. This coloring c is the
coloring guaranteed by Lemma 6.4. This coloring has f(d) d

√
n0 colors for some function f ; we can

see this by bounding ∆(Bnd ) by a function of d. Examining its construction in Section 5.2, each
simplex in Bnd is in at most two different building blocks. Each building block has 2(d+ 1) vertices,

so for any 1 ≤ i < j ≤ d, an i-simplex in Bnd is incident to at most
(
4d−i−1
j−i

)
j-simplices. Thus,

∆(Bnd ) is at most some function of d. Therefore, there is a simplicial complex with ñ0 = f(d) d
√
n0

vertices and θ
(
(d+1)3

f(d)d
ñ0

d
)
d-simplices. As

(
n0

d

)
≤
(
eñ0
d

)d
, then there are Ω(κd

(
ñ0

d

)
) d-simplices in

Cnd for some appropriate function f(d) = Ω
(

(d+1)3

f(d)ded

)
.

6.4 Variants of the Laplacian.

We finish this section by showing how our results imply upper and lower bounds on the spectral
gap of several variants of the Laplacian.

6.4.1 Boundary Matrix.

The QTDA algorithm of McArdle, Gilyén, and Berta [50] is not parameterized by the spectral
gap of the combinatorial Laplacian; rather, it is parameterized by the spectral gap of the boundary
matrices. However, the non-zero singular values of the dth boundary matrix ∂d are the square roots
of the eigenvalues of the (d − 1)st up Laplacian Lup

d−1 as Lup
d−1 = ∂d∂

T
d . Therefore, Theorem 1.2

and Theorem 6.1 imply exponential upper and lower bounds on the spectral gap of the boundary
matrix.

6.4.2 Normalized Laplacian.

We now show that the normalized up Laplacian L̃up
d can also have exponentially-small spectral

gap. While the eigenvalues of the unnormalized dth up Laplacian Lup
d are in the range [0, n0], the

eigenvalues of the normalized dth up Laplacian are in the range [0, d+2] [35, Theorem 3.2.i]. As the
normalized up Laplacian has a constant upper bound on its eigenvalues, it is reasonable to suspect
the normalized up Laplacian also has a constant lower bound on its eigenvalues. Theorem 6.5 shows
this is not the case.

Corollary 6.5. Let d, n ≥ 1. There is a d-dimensional simplicial complex Bnd with nd ∈ Θ(poly(d)·
n) d-simplices and a constant cd ≥ 1 that depends only on d such that the spectral gap the normalized
up Laplacian is λmin(L̃up

d ) ∈ O( 1
c
nd
d

).

Proof. This follows from Theorem 1.2 and Lemma 2.5. The statement follows as dmin[Bnd ] = 1.

6.4.3 Persistent Laplacian.

Recently, Wang, Nguyen, and Wei [67] introduced the persistent Laplacian of simplicial
filtrations as a generalization of the combinatorial Laplacian. The spectral gap of the persistent
Laplacian has since appeared as a parameter of quantum algorithms for computing persistent Betti
number [33], so lower bounding it is also of interest to QTDA. Mémoli, Wan, and Wang [52,
Theorem SM5.8] prove that persistent Laplacians preserve effective resistance of cycles; therefore,
the bounds on the spectral gap of the combinatorial Laplacian also apply to the persistent Laplacian
by Lemma 4.4.
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7 Conclusion and Open Questions.

In this paper, we propose a new span-program-based quantum algorithm for computing Betti
numbers. This algorithm is a novel approach to QTDA that is more similar to classical incremen-
tal algorithms for computing Betti numbers than previous QTDA algorithms. Unfortunately, we
show that, in the worse case, the span-program based algorithm takes exponential time due to
cycles with exponentially-large effective resistance or effective capacitance. However, as a corol-
lary to exponentially-large effective resistance, we prove that the spectral gap of the combinatorial
Laplacian can be exponentially small. This proves that all known QTDA algorithms also require
exponential time in the worst case. Below we discuss some of the questions left open by our work.

Incremental Quantum Algorithm for Persistent Betti numbers. Our algorithm incre-
mentally computes the Betti number of a simplicial complex. While the classical algorithm for
computing persistent Betti numbers is incremental [69], our algorithm is unable to perform per-
sistent pairing. In other words, our algorithm can identify when a homology class dies, but it
cannot identify when that homology class was born. It is an open question whether our algo-
rithm can be adapted to compute the persistent Betti numbers of a simplicial complex. There are
quantum algorithms for computing persistent Betti numbers [33, 50], but these algorithms are not
incremental.

Lower Bounds or Expectation of the Spectral Gap. Theorem 6.1 shows that the spectral
gap of the combinatorial Laplacian can be exponentially small. However, it is an open question
how common these sorts of worst-case complexes are. While there are exact or expected lower
bounds for certain families of simplicial complexes [4, 23, 28, 44, 45, 46, 63, 68], it is still unknown
what the expected spectral gap is, or if there are lower bounds on the spectral gap, for all simplicial
complexes, or for families of simplicial complexes of interest like Vietoris-Rips complexes.

Cheeger Inequalities and Implications of Exponentially-Small Spectral Gaps. The ex-
istence of simplicial complexes with exponentially-small spectral gap implies that existing QTDA
algorithms cannot exactly compute Betti numbers without running for an exponentially long time;
however, they can solve the related problem of Approximate Betti Number Estimation [30]
(ABNE) of counting the number of eigenvalues of the Laplacian smaller than a given threshold.
However, it remains an open question how useful approximate Betti number estimation is in prac-
tice.

A potential interpretation for approximate Betti number estimation could come in the form of
a higher-dimensional Cheeger inequality. The Cheeger inequality in graphs relates the smallest
eigenvalue(s) of the graph Laplacian to a value called the Cheeger constant that measures the
existence of (multi-way) sparse graph cuts [11, 43]. Intuitively, if the Hodge Theorem (Theorem 2.1)
says that the graph Laplacian has more than one zero eigenvalue if and only if the graph is discon-
nected, then the Cheeger inequality says that it has small non-zero eigenvalues if and only if it is
“almost” disconnected.

However, higher-dimensional generalizations of the Cheeger inequality remain elusive. Ideally
(for the purpose of ABNE), a higher-dimensional Cheeger inequality would say something similar:
a simplicial complex “almost has non-trivial d-homology” or “has a sparse cut” if and only the
dth combinatorial Laplacian has small non-zero eigenvalues. One hurdle is that it is not clear
how to generalize the notion of “sparse cut” to higher dimensions. While there have been several
definitions proposed for a Cheeger constant for higher-dimensional Laplacians [25, 47, 53, 58], one

31



or both sides of a Cheeger inequality have failed for these constants [27, 28, 58, 64]. Our work
provides another counterexample to these Cheeger inequalities; the spectral gap of our worst-case
complexes is exponentially small, but the proposed notions of Cheeger constant cannot be.

A recent paper presents a two-sided Cheeger inequality [39] that connects the spectral gap of
the combinatorial Laplacian to a Cheeger constant based on the 1-norm of chains. This Cheeger
inequality does not have the same interpretation as the graph Cheeger inequality of implying that
simplicial complexes with small eigenvalues “almost have non-trivial homology” though. It remains
an open question if such a higher-dimensional Cheeger inequality exists.
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A Proof of Lemma 2.5

Lemma 2.5. Let K be a simplicial complex. Let dmin and dmax be the minimum and maximum
degrees of any d-simplex in K. Suppose that dmin > 0. The normalized and unnormalized spectral
gap are related as follows:

1

dmax
λmin(Lup

d ) ≤ λmin(L̃up
d ) ≤ 1

dmin
λmin(Lup

d )

Proof. Following the same steps as in the proof of Lemma 4.4, we can see that λmin(L̃up
d ) =

λ−1
max((L̃up

d )+). Therefore, we will prove the follow equivalent statement:

dminλmax((Lup
d )+) ≤ λmax((L̃up

d )+) ≤ dmaxλmax((Lup
d )+)

Also from the proof of Lemma 4.4, we see that λmax((L̃up
d )+) = max{xT (L̃up

d )+x : ∥x∥ = 1, x ∈
imD−1/2∂d+1}. For a vector x ∈ im L̃up

d , following the steps of Lemma 4.2, we conclude that

xT (L̃up
d )+x = min{∥y∥2 : D−1/2∂d+1y = x}

As D1/2 is a bijection, then we further conclude that

xT (L̃up
d )+x = min{∥y∥2 : D−1/2∂d+1y = x}

= min{∥y∥2 : ∂d+1y = D1/2x}
=RD1/2x(K)

We have the bound RD1/2x(K) = ∥D1/2x∥2Rx(K) ≥ dminRx(K). As the chain D1/2x ∈ im ∂d+1 if
and only if x ∈ imD−1/2∂d+1, we have the general bound:

λmax((L̃up
d )+) = max{xT (L̃up

d )+x : ∥x∥ = 1, x ∈ imD−1/2∂d+1}
= max{RD1/2x(K) : ∥x∥ = 1, x ∈ imD−1/2∂d+1}
≥dmin max{Rx(K) : ∥x∥ = 1, x ∈ im ∂d+1}
=dminλmax((Lup

d )+) (Lemma 4.4)

To prove λmax((L̃up
d )+) ≤ dmaxλmax(Lup

d )+), we can similarly prove that

λmax((Lup
d )+) = {(D−1/2x)(L̃up

d )+(D−1/2x) : ∥x∥ = 1, x ∈ im ∂d+1},

and the rest of the proof follows similarly.
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B Properties of Effective Resistance: Parallel, Series, and Mono-
tonicity Formulas.

We now prove there are formulas for effective resistance in simplicial complexes analogous to the
series and parallel formulas for effective resistance in graphs. These formulas not only are useful for
calculating effective resistance, but they also provide intuition for effective resistance. In particular,
they provide justification for the claim that effective resistance measures “how null-homologous” a
cycle is in a complex.

Theorem B.1 (Series Formula). Let K1 and K2 be simplicial complexes with γ ∈ Cd−1(K1) ∩
Cd−1(K2), Cd(K1) ∩ Cd(K2) = ∅, and γ null-homologous in K1 and K2. Let K = K1 ∪ K2. Then

Rγ(K) ≤ Rγ1(K1) +Rγ2(K2).

Equality is achieved when γ1 and γ2 are the unique chains in Cd(K1) and Cd(K2) that sum to γ.

Proof. Let γ1 and γ2 be null-homologous cycles in K1 and K2 respectively that sum to γ, and
let f1 and f2 be the minimum-energy unit γ1- and γ2-flows, respectively. Then f = f1 + f2 is a
unit γ-flow, and we can bound Rγ(K) ≤ J(f) = J(f1) + J(f2) = Rγ1(K1) +Rγ2(K2); the equality
J(f) = J(f1) + J(f2) follows from the fact that K1 and K2 have disjoint sets of d-simplices.

To prove the other direction, observe that γ can always be written as the sum of two null-
homologous chains γ1 ∈ Cd−1(K1) and γ2 ∈ Cd−1(K2). Any unit γ-flow g defines null-homologous
(d − 1)-cycles γ1 and γ2 that sum to γ; namely, if g1 and g2 are the restriction of g to K1 and K2

respectively, then γ1 = ∂g1 and γ2 = ∂g2.
If γ can be uniquely decomposed as γ = γ1 + γ2, then any unit γ-flow f can be decomposed

as a unit γ1-flow f1 and a unit γ2-flow f2. It follows that the energy of f is minimized when the
energy of f1 and f2 are both minimized. Hence, Rγ(K) = Rγ(K1) +Rγ(K2).

Theorem B.2 (Parallel Formula). Let K1 and K2 be simplicial complexes with γ ∈ Cd−1(K1) ∩
Cd−1(K2), Cd(K1) ∩ Cd(K2) = ∅, and γ null-homologous in K1 and K2. Let K = K1 ∪ K2. Then

Rγ(K) ≤
(

1

Rγ(K1)
+

1

Rγ(K2)

)−1

Equality is achieved when im ∂d[K1] ∩ im ∂d[K2] = span{γ}.

Proof. Let f1 and f2 be the minimum energy unit γ-flows in K1 and K2 resp. For any t ∈ R, the
chain gt = tf1 + (1 − t)f2 is a unit γ-flow in K. We can therefore bound the effective resistance
over the minimum of these combinations as Rγ(K) ≤ mint∈R J(gt).

To get the tighest bound of Rγ(K), we now derive topt := arg mint∈R J(gt). Observe that
J(gt) = t2J(f1) + (1 − t)2J(f2) = t2Rγ(K1) + (1 − t)2Rγ(K2); this follows from the fact that K1

and K2 have disjoint sets of d-simplices. The quantity J(gt) is a positive quadratic with respect to
t, so topt is the value of t where the derivative of J(gt) is 0. Taking the derivative, we find that
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Figure 5: Left: The cycle γ is the blue boundary with ±1 coefficients, and the unique unit γ-flow is
the 6 triangles in series. If the complex is unweighted, then the effective resistance of γ is 6. Right:
The cycle γ is the equator of the sphere, and the two hemispheres are two unit γ-flows in parallel.
If each hemisphere has flow energy c, then the effective resistance of γ is c

2 .

topt = Rγ(K2)/(Rγ(K1) +Rγ(K2)). Plugging topt into J(gtopt), we find that

J(gtopt) =

(
Rγ(K2)

Rγ(K1) +Rγ(K2)

)2

Rγ(K1) +

(
1− Rγ(K2)

Rγ(K1) +Rγ(K2)

)2

Rγ(K2)

=

(
Rγ(K2)

Rγ(K1) +Rγ(K2)

)2

Rγ(K1) +

(
Rγ(K1)

Rγ(K1) +Rγ(K2)

)2

Rγ(K2)

=

(
1

Rγ(K1) +Rγ(K2)

)2 (
Rγ(K1) +Rγ(K2)

)
Rγ(K1)Rγ(K2)

=
Rγ(K1)Rγ(K2)

Rγ(K1) +Rγ(K2)

=

(
1

Rγ(K1)
+

1

Rγ(K2)

)−1

This implies the upper bound on Rγ(K) in the theorem statement. To get the lower bound,
observe that any unit γ-flow g in K can be orthogonally decomposed into chains g1 ∈ Cd(K1) and
g2 ∈ Cd(K2), so ∂g1 + ∂g2 = γ. We claim that ∂g1 = tγ and ∂g2 = (1− t)γ for some value of t; if
not, then ∂g1 = tγ + η and ∂g2 = (1− t)γ − η for some non-zero chain η ̸∈ span{γ}, which cannot
be the case as im ∂K1 ∩ im ∂K2 = span{γ}. This proves the chain g is a linear combination of a unit
γ-flow in K1 and a unit γ-flow in K2. The chain gt is the lowest energy such linear combination.

Figure 5 shows examples of unit γ-flows in series and parallel. These formulas justify the claim
that the effective resistance of a null-homologous cycle γ is a measure of how null-homologous γ is.
The more chains with boundary γ, the smaller the effective resistance of γ by the parallel formula.
The smaller the chains bounding γ, the lower the effective resistance by the series formula.

Another important property of effective resistance in graphs is Rayleigh monotonicity.
Rayleigh monotonicity says that adding edges to the graph can only decrease the effective re-
sistance between any pair of vertices; this reinforces the notion that effective resistance measures
how well-connected a pair of vertices are, as adding an edge can only make a pair of vertices better
connected. We prove a similar result for simplicial complexes.

Theorem B.3 (Rayleigh Monotonicity). Let L ⊂ K be simplicial complexes. Let γ ∈ Cd−1(K) ∩
Cd−1(L) be a cycle that is null-homologous in both complexes. Then Rγ(K) ≤ Rγ(L).

38



Proof. As Cd(L) ⊂ Cd(K), then any unit γ-flow in L is also a unit γ-flow in K. As the effective
resistance is the minimum energy of a unit γ-flow, then clearly Rγ(K) ≤ Rγ(L).

C Duality of Resistance and Capacitance in Embedded Complexes.

In this section, we consider the effective capacitance of a cycle in the special case when K is a
d-dimensional simplicial complex with a given embedding into Rd+1. In this case, K is called an
embedded complex. Embedded complexes serve as a high-dimensional generalization of planar
graphs and naturally admit a dual graph. We will show that the effective capacitance of certain
(d − 1)-cycles γ in K are equal to the effective resistance between a pair of vertices in the dual
graph that are “dual” to γ. This theorem generalizes the analysis of capacitance in planar graphs
given by Jeffery and Kimmel [38]. Hence, we can parameterize the quantum algorithm deciding if
γ is null-homologous (Theorem 4.9) in terms of the effective resistance of γ in K and the effective
resistance between the pair of vertices in the dual graph. Specifically, we will generalize the special
case of planar graphs for which the vertices s and t appear on the boundary of the same face.
Throughout this section we assume we are given the embedding as input. Computing the dual
graph from an embedding can be done in polynomial time [15].

C.1 Duality in Embedded Complexes.

The Alexander Duality theorem [32, Corollary 3.45] states that for a d-dimensional simplicial
complex K with an embedding into Rd+1, the complement Rd+1 \K consists of βd[K] + 1 connected
components. We call these connected components voids. Exactly one of these voids is unbounded.
We denote the bounded voids as Vi for 1 ≤ i ≤ βd and the unbounded void as V∞. Moreover, the
boundaries of the bounded voids generate the homology group Hd(K). The embedding implies that
each d-simplex is contained on the boundary of at most two voids, and we make the assumption
that the d-simplices are oriented consistently with respect to the voids. That is, if a d-simplex is
on the boundary of two voids it is oriented positively on one void, and negatively on the other.
We have a boundary matrix ∂d+1 whose columns are the voids and whose rows are the d-simplices.
From the embedding and the consistent orientation we see that ∂d+1 is the edge-vertex incident
matrix of the directed dual graph : the directed graph whose vertices are in bijection with the
voids and whose edges are in bijection with the d-simplices of K. The direction of the edges are
inherited from the orientations of the d-simplices. For a d-simplex σ on the boundary of voids
V1 and V2 we denote the dual edge by σ∗ = {v∗1, v∗2} and we define the dual weight function by
w∗(σ∗) = 1/w(σ).

We construct an additional chain group Cd+1(K) with the bounded voids as basis elements.
This is a purely algebraic construction, meaning basis elements of Cd+1(K) do not correspond to
(d + 1)-simplices. We can also define a boundary map ∂d+1 : Cd+1(K) → Cd(K), where ∂Vi is the
boundary of the void Vi as described above. This gives rise to a new chain complex

· · · 0→ Cd+1(K)
∂d+1−−−→ Cd(K)

∂d−→ · · · ∂1−→ C0(K).

Since the boundaries of the voids generate the dth homology group of K and Cd+1(K) is generated
by these voids we obtain a valid chain complex. Moreover, we have that dimHd(K) = 0 in our new
chain complex.

In addition to a dual graph, we define the dual complex of K, denoted K∗, by defining the
dual chain groups Ck(K∗) via the isomorphism Cd−k+1(K) ∼= Ck(K). Importantly, note that only
C0(K∗) and C1(K∗) correspond to the chain groups of a simplicial complex (the dual graph),
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while the higher chain groups Ci(K) for i ≥ 2 are a purely algebraic construction. Moreover,
we define the dual boundary operator ∂∗k : Ck(K∗) → Ck−1(K∗) to be the coboundary operator
δd−k+1 : Cd−k+1(K) → Cd−k(K) of K, and the dual coboundary operator δ∗k : Ck−1(K∗) → Ck(K∗)
to be the boundary operator ∂d−k+1 : Cd−k+1(K)→ Cd−k(K) of K. In other words the (co)boundary
operators commute with the duality isomorphism. We summarize the construction in the following
commutative diagram.

Cd+1(K) Cd(K) · · · C0(K)

C0(K∗) C1(K∗) · · · Cd+1(K∗)

∼=

∂d+1

∼=

∂d

δd

∂1

δd−1 δ1

∼=
δ∗0

∂∗
1

δ∗1

∂∗
2

δ∗d

∂∗
d+1

We need to make one additional assumption on the location of the input (d − 1)-dimensional
cycle γ which makes our setup a generalization of a planar graph with two vertices s and t appearing
on the same face. We assume that there exists a void Vi with two unit γ-flows Γ1 and Γ2 such that
supp(Γ1) ∩ supp(Γ2) = ∅ and supp(Γ1) ∪ supp(Γ2) = supp(∂d+1Vi). That is, there exist two unit
γ-flows whose supports partition the boundary of the void Vi. For example, the support of the cycle
γ could be the equator of a sphere, and the support of the cycles Γ1 and Γ2 could be the north and
south hemispheres. This generalizes the fact in planar graphs that when s and t are on the same
face we can find two st-paths which partition the boundary of the face. In planar graphs we are
guaranteed to find two such paths, however for an arbitrary (d− 1)-cycle γ we are not guaranteed
to find two unit γ-flows partitioning the boundary of some void. More specifically, we take Γ2 to be
a unit (−γ)-flow so that ∂dΓ2 = −γ. In the planar graph analogy this is equivalent as viewing Γ1

as a path from s to t and viewing Γ2 as a path from t to s. We add an additional basis element Σ
to Cd(K) such that ∂dΣ = −γ. In planar graphs this is equivalent to adding an edge directed from
t to s. The addition of this edge splits the face containing s and t into two. In higher dimensions,
the geometry of adding another d-simplex to fill γ is more complicated, but the addition of Σ to
Cd(K) allows us to perform a purely algebraic operation to our chain complex that behaves as if
Vi has been split into two; namely, we remove Vi from Cd+1(K) and replace it with two new basis
elements Vs and Vt. Next, we extend the boundary operator to Vs and Vt in the following way:
∂d+1Vs = Γ1 − Σ and ∂d+1Vt = Γ2 + Σ. In the dual complex, the vertices dual to Vs and Vt are
denoted s∗ and t∗, and the edge dual to Σ is denoted Σ∗ = {t∗, s∗}.

C.2 Effective capacitance is Dual to Effective Resistance.

In this next section, we will show that the effective capacitance of γ in a subcomplex L ⊂ K
is equal to the effective resistance between s∗ and t∗ in the dual complex L∗ ⊂ K∗, where L∗ is
defined as being the subgraph of K∗ with all of the vertices of K∗ but only the edges dual to the
d-simplices not in L.

The effective resistance between s∗ and t∗ in L∗ is determined by the unit s∗t∗-flows in L∗.
However, it will be convenient to work with circulations instead of flows. A unit s∗t∗-circulation
f is a 1-cycle such that f(Σ∗) = 1. Recall that Σ∗ is the edge directed from t∗ to s∗, so a unit
s∗t∗-circulation is just a unit s∗t∗-flow with additional flow on the edge Σ∗ to the cycle. Clearly,
there is a bijection between unit s∗t∗-flows and unit s∗t∗-circulations. We define the flow energy of
a circulation to be equal to the flow energy of its corresponding flow.

Theorem C.1. Let K be a d-dimensional simplicial complex embedded into Rd+1, and let L ⊂ K
be a subcomplex. Let γ ∈ Cd−1(K) be a (d− 1)-cycle such that there exist two unit γ-flows Γ1, Γ2 ∈
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Cd(K) with supports that partition the boundary of some void Vi. Then the effective capacitance
Cγ(L,K) is equal to the effective resistance Rs∗t∗(L∗).

Proof. Let p be a unit γ-potential in L, and define f ∈ C1(L∗) to be the image of δd−1p under
the duality isomorphism; that is, f = ∂∗2p

∗. The 1-chain f is a circulation in the 1-skeleton of
L∗. Further, since Σ∗ = {t∗, s∗} the circulation f corresponds to a unit s∗t∗-flow by the following
calculation:

fTΣ∗ = pT∂dΣ = pTγ = 1.

Next, we calculate the flow energy of f and show it is equal to the potential energy of p.

J(f) =
∑

e∗∈L∗
1

f(e∗)2

w∗(e∗)

=
∑

e∗∈L∗
1

f(σ∗)2w(e)

=
∑

σ∈Kd\Ld

δp(σ)2w(σ)

= J (p)

Conversely, let f∗ be the minimal-energy unit s∗t∗-circulation in L∗. By the assumptions
outlined in the previous section, we have dimHd(K) = 0, which in turn gives us dimH1(K∗) = 0.
Hence, f∗ ∈ im ∂∗2 . Let p∗ ∈ C2(L∗) with ∂∗2p

∗ = f∗; we will show that p is the unit γ-potential in
L in bijection with f∗. To see that p is a unit γ-potential we compute its value on γ:

pTγ = pT∂dΣ = (δd−1p)
TΣ = (∂∗2p

∗)TΣ∗ = (f∗)TΣ∗ = 1.

Moreover, as ∂∗2p
∗ = f∗ and f∗ has its support on L∗1 (which is defined to only have edges dual to

the d-simplices in K \ L), then ∂d−1[L]p = 0, so p is a unit γ-potential in L.
It remains to show that the potential energy of p is equal to the flow energy of f∗. We have the

following calculation:

J (p) =
∑

σ∈Kd\Ld

δd−1p(σ)2w(σ)

=
∑

σ∈Kd\Ld

δd−1p(σ)2

w∗(σ∗)

=
∑

σ∗∈L∗
1

∂∗2p
∗(σ∗)2

w∗(σ∗)

=
∑

σ∗∈L∗
1

f∗(σ∗)2

w∗(σ∗)

= J(f∗).

D Evaluating the span program for null-homology testing.

In this section, we give a quantum algorithm for evaluating the null-homology span program.
Our algorithm is inspired by and generalizes the quantum algorithm for evaluating st-connectivity
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span program in graphs. The first quantum algorithm for evaluating the st-connectivity span
program was given by Belovsz and Reichardt [5]; however, we follow the slightly different algorithm
introduced by Ito and Jeffery [36]. We are also greatly indebted to the presentation of this algorithm
given by Jeffery and Kimmel [38], from which our algorithm is adapted.

The algorithm for evaluating a general span program P = (H,U , |τ⟩, A) is to perform phase
estimation of the vector |w0⟩ := A+|τ⟩ on the unitary operator U = RH(x)RkerA where the notation
RS denotes the reflection about the subspace S. (The unitary RS = 2ΠS − I, where ΠS is the
projection onto S.) Intuitively, if x is a positive instance, then |w0⟩ will be close to an eigenvector of
U with phase 0. If x is a negative instance, then |w0⟩ will be far from any eigenvector of U of phase 0.
If we want to evaluate the function f : D → {0, 1}, we need to perform phase estimation to precision

O
(

1/
√
W−(f,P)W+(f,P)

)
. The algorithm for phase estimation of a unitary U to precision O(δ)

performs O(1/δ) implementations of the unitary U [41], so the algorithm for evaluating the span

program P = (H,U , |τ⟩, A) requires O
(√

W−(f,P)W+(f,P)
)

implementations of U . We now

analyze the time complexity of implementing the unitary U .
The reflection RH(X) can be implemented with two queries to Ox. This reflection is the same

as the reflection across the good states in Grover’s Algorithm. The rest of this section is devoted
to an implementation of Rker ∂ .

Recall that ker ∂d ⊂ Cd(K). The idea behind the implementation of Rker ∂ is that instead of
reflecting across ker ∂d directly, we can embed Cd(K) into Cd−1(K) ⊗ Cd(K) by sending |τ⟩ →
c|∂τ⟩|τ⟩ (where c is a normalization constant). We can then implement the reflection Rker ∂ by
implementing a series of “local reflections” on the basis |∂τ⟩|τ⟩.

We consider two subspaces B and C of Cd−1(K)⊗ Cd(K). The spaces B and C are defined:

B = span

{
|bτ ⟩ :=

1√
d+ 1

|∂τ⟩|τ⟩ : τ ∈ Kd

}
and

C = span

{
|cσ⟩ :=

∑
σ⊂τ

√
w(σ)

deg(σ)
|σ⟩|τ⟩ : σ ∈ Kd−1

}
.

The space Cd−1(K)⊗ Cd(K) has basis {|σ⟩|τ⟩ | σ ∈ Kd−1, τ ∈ Kd}. The vector |bτ ⟩ is non-zero
on a basis element |σ⟩|τ⟩ if and only if σ is in the support of the boundary of τ . Similarly, a
component of |cσ⟩ is non-zero on |σ⟩|τ⟩ if and only if τ is in the support of the coboundary of σ.
The vector |bτ ⟩ can be thought of as being like the boundary of τ , with the additional property
that the set {|bτ ⟩ | τ ∈ Cd(K)} is orthonormal. Similarly, the vector |cσ⟩ is like the coboundary of
σ but orthonormal.

We also define operators that embed Cd(K) and Cd−1(K) into B and C respectively. We define
linear operators MB : Cd(K)→ B and MC : Cd−1(K)→ C as follows:

MB :=
∑
τ∈Kd

|bτ ⟩⟨τ |,

and
MC :=

∑
σ∈Kd−1

|cσ⟩⟨σ|.

As the columns of MB and MC are orthonormal, both operators are isometries.
We introduce the matrices MC and MB as they have the property that kerM †

CMB = ker ∂,
which we prove in the follow lemma. This fact will give us a way to implement Rker ∂ .
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Lemma D.1. kerM †
CMB = ker ∂.

Proof. We first calculate the matrix M †
CMB. We then argue that kerM †

CMB = ker ∂. For a
(d−1)-simplex σ and a d-simplex τ , we have that

⟨cσ|bτ ⟩ =
∑

τ ′∈Kd:σ⊂τ ′

w(τ)√
deg(σ)

⟨σ|∂τ⟩⟨τ ′|τ⟩ =

{√
w(τ)

(d+1) deg(σ)⟨σ|∂τ⟩ if σ ⊂ τ
0 otherwise

.

So ⟨cσ|bτ ⟩ is non-zero if and only if σ is in the boundary of τ. We use this to calculate the product

M †
CMB :

M †
CMB =

∑
σ∈Kd−1

∑
τ∈Kd

|σ⟩⟨cσ|bτ ⟩⟨τ |

=
1√

(d+ 1)

∑
σ⊂τ

√
w(τ)⟨σ|∂τ⟩√

deg(σ)
|σ⟩⟨τ |

=
1√

(d+ 1)

 ∑
σ∈Kd−1(K)

|σ⟩⟨σ|√
deg(σ)

 ∑
τ∈Kd

√
w(τ)|∂τ⟩⟨τ |

=
1√

(d+ 1)

 ∑
σ∈Kd−1(K)

|σ⟩⟨σ|√
deg(σ)

 ∂
√
W =: ∂̂.

The term |σ⟩⟨σ|√
deg(σ)

is all-zeros matrix except for the (σ, σ)-entry, which is 1√
deg(σ)

. The sum∑
σ∈Kd−1

|σ⟩⟨σ|√
deg(σ)

is a diagonal matrix. Accordingly, the matrix ∂̂ is ∂
√
W with each row scaled.

Scaling the rows of a matrix does not change its row space or kernel, so kerM †
CMB = ker ∂.

The spaces B and C and the matrices MB and MC are inspired by the follow lemma of Szegedy
which is necessary for implementing Rker ∂ .

Lemma D.2 (Szegedy [65], Theorem 1). Let MB and MC be matrices with the same number of

rows and orthonormal columns, and let B = spanMB and C = spanMC . The matrix M †
CMB has

singular values at most 1. Let cos θ1, . . . , cos θk be the singular values of M †
CMB in the range (0, 1).

Let U = RCRB. We can decompose the eigenspaces of U as

• The (+1)-eigenspace of U is (B ∩ C)⊕ (B⊥ ∩ C⊥).

• The (-1)-eigenspace of U is (B ∩ C⊥)⊕ (B⊥ ∩ C).

• The remaining eigenvalues of U are e±2iθj for 1 ≤ j ≤ k.

The following lemma gives us a way to implment the Rker ∂ . Let RU− be the rotation about
(−1)-eigenspace of U , and let V = M †

BRU−MB. The matrix V embeds Cd(K) into B with MB,

performs a reflection on B about the (−1)-eigenspace of U , and unembeds with M †
B. The following

lemma proves that V = Rker ∂ .

Lemma D.3. The matrix V = M †
BRU−MB satisfies the equality V = Rker ∂.

43



Proof. We first verify that V is a reflection; that is, we show the eigenvalues of V are 1 and -1.
The matrices MB and MC have orthonormal columns, so we can use Lemma D.2 to characterize
the eigenspaces of U . The (−1)-eigenspace of U is (B ∩ C⊥)⊕ (B⊥ ∩ C) and the (+1)-eigenspace
of U is (B ∩ C) ∩ (B⊥ ∩ C⊥). As the spaces (B ∩ C) and (B ∩ C⊥) span B, then RU− restricted

to B has eigenvalues 1 and -1. As B = imMB and V = M †
BRU−MB, then we conclude that V has

eigenvalues 1 and -1 as well.
Now that we have determined that V is a reflection, we need to determine which subspace

V reflects across. A corollary of the previous paragraph is that a vector |ψ⟩ ∈ Cd(K) is in the
(+1)-eigenspace of V if and only if MB|ψ⟩ is in the (−1)-eigenspace of U . Specifically, a vector

|ψ⟩ is in the (+1)-eigenspace of V if and only if MB|ψ⟩ ∈ C⊥. As C⊥ = kerM †
C , the vector |ψ⟩

is in the (+1)-eigenspace of V if and only if |ψ⟩ ∈ kerM †
CMB. We proved in Lemma D.1 that

kerM †
CMB = ker ∂, so we conclude that V = Rker ∂

We have a matrix V that implements Rker ∂ ; next, we analyze the complexity of implementing
V . We start by analyzing the complexity of implementing RU− , the reflection across the (−1)-
eigenspace of U .

We implement the reflection around the (−1)-eigenspace of U using phase estimation, an algo-
rithm introduced by Magniez et. al. [49]. The algorithm is as follows. We first estimate the phase
of U to some degree of accuracy to be specified shortly. Intuitively, we need to estimate the phase
of U to high enough accuracy to distinguish between −1 eigenvalues of U and eigenvalues of U
close to -1. We then perform a reflection controlled on the estimated phase.

The phase gap of a unitary U with eigenvalues {eiθ1 , . . . , eiθk} is min{|θi| : θi ̸= 0}. The
following lemma shows that the phase gap determines the complexity of reflecting across the 1-
eigenspace of U .

Lemma D.4 (Magniez et. al. [49], Paraphrase of Theorem 6). Let U be a unitary with phase gap
θ. A reflection around the 1-eigenspace of U can be performed to constant precision with O

(
1
θ

)
applications of U .

The phase gap measures gap between the 1-eigenspace of a unitary and all other eigenvalues.
We are interested in the gap in phase between the (−1)-eigenspace of U and the other eigenvalues
of U . This is precisely the phase gap of −U . The following lemma analyzes the phase gap of −U
and gives the complexity of reflecting about the (−1)-eigenspace of U .

Lemma D.5. We can implement RU− with O
(√

d+1
λ̃min

)
calls to U , where λ̃min is the smallest

non-zero eigenvalue of the normalized up-Laplacian of K.

Proof. We need to calculate the phase gap of −U to determine the precision to which we need to
estimate the phase of U . Observe that if θ is the phase of an eigenvalue of U , then θ + π is the
phase of an eigenvalue of −U . We can bound the phase gap of −U using Lemma D.2. The non-zero
eigenvalues of U are {e±i2θj}j , where {cos θj}j were the singular values of M †

CMB. Therefore, the
phases of −U are {±|π − 2θj |}j . Using the inequality that π/2− θj ≥ cos θj for θj ∈ [0, π/2], then
the phase gap of −U is bounded below by

|π − 2θj | ≥ 2 cos θj ≥ 2 · σmin(M †
CMB)

where σmin(M †
CMB) is the smallest singular value of M †

CMB.

We can actually relate the smallest singular value of M †
CMB to something more meaningful.

By the proof of Lemma D.1, the matrix M †
CMB = 1√

d+1
D−1/2∂

√
W , where D is the diagonal
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matrix with the degrees of the (d−1)-simplices on the diagonal. Thus, (M †
CMB)(M †

CMB)† =
1

d+1D
−1/2∂WδD−1/2 = 1

d+1D
−1/2LD−1/2. Recall from Section 2 that the matrix D−1/2LD−1/2

is the normalied up-Laplacian. The singular values of a matrix A are the square roots of the
eigenvalues of AAT . Thus, the smallest singular value of M †

CMB, and the phase gap of −U , is

Ω

(√
λ̃min
d+1

)
, where λ̃min is the smallest eigenvalue of D−1/2LD−1/2. Therefore, by Lemma D.4, we

can implement RU− with O
(√

d+1
λ̃min

)
calls to U .

We are almost ready to give the running time for V = Rker ∂ , but first, we need to make a delicate
distinction. The matrices MB and MC have orthonormal columns, but they are not unitary. We
can see this as kerM †

B ̸= 0 and kerM †
C ̸= 0. As MB and MC are not unitary, they cannot be

implemented on a quantum computer. Fortunately, it suffices to implement unitaries UB and UC

such that UB|Cd(K) = MB and UC |Cd−1(K) = MC . With this in mind, we can give the running time
for V = Rker ∂ .

Lemma D.6. There is an algorithm to perform Rker ∂ in time Õ
(√

d+1
λ̃min

(TB + TC)
)
, where TB

and TC are the times to perform the unitaries UB and UC respectively.

Proof. Lemma D.3 shows that Rker ∂ = V = M †
BRU−MB. We can equivalently run U †

BRU−UB. As

UB takes TB by definition, we only need to show we can implement RU− in Õ(
√

(d+ 1)/λ̃min (TB +

TC)) time. Lemma D.5 shows we can implement RU− with O(
√

(d+ 1)/λ̃min) calls to U , so we

need to show we can implment U in Õ(TB + TC). The unitary U = RCRB, and we claim we can

implement RC and RB in Õ(TB) and Õ(TC) respectively. We can implement RB as UBRKd
U †
B,

where RKd
reflects across the basis states {|0⟩|σ⟩ | σ ∈ Kd}. We can check if a quantum state is

of the form |0⟩|σ⟩ in O(log nd) gates (specifically, by checking if the basis state is within a certain
range), so the unitary RKd

takes O(log nd) gates, and RB takes Õ(TB) time. The unitary RC takes
Õ(TC) time by the same argument.

The running time TB is dependent on how the boundary maps are loaded into the quantum
algorithm. We propose a method of storing the boundary maps in a quantum computer called the
incidence array. The incidence array is adapted from the adjacency array introduced by Durr
et al. [18] to store the adjacency between pairs of vertices in a graph.

For a d-simplex τ = {v0, . . . , vd}, the down-incidence array is the function g : |τ⟩|j⟩|0⟩ →
|τ⟩|j⟩|τ \ {vj}⟩ for 0 ≤ j ≤ d. The simplices in the boundary of τ have alternating sign. To address
this, we also perform a negation conditioned on the parity of |j⟩ to compute (−1)j |τ⟩|j⟩|τ \ {vj}⟩.

Durr et al. [18] claim that queries to the incidence array can be performed in logarithmic time.
As the down-incidence array is identical to the adjacency array8, queries to the down-incidence also
take logarithmic time. We can compute the state |∂τ⟩|τ⟩ with the down-incidence array and the
following lemma.

Lemma D.7 (Cade, Montanaro, Belovs [9], Implicit in the proof of Lemma 2). Let f : [m]→ [k] be
a function, and let Of be an oracle that computes Of : |i⟩|0⟩ → |i⟩|f(i)⟩. The state 1√

m

∑m
i=1|f(i)⟩

can be computed with O(
√
m) queries to Of and O(polylog(m)) additional gates.

Corollary D.8. The unitary UB can be implemented in O(
√
d) queries to the up-incidence array

and Õ(
√
d) time.

8The down-incidence array is actually an adjacency array of a graph related to simplicial complexes, namely, the
incidence graph between the (d−1)- and d-simplices.
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It is harder to produce a generic implementation of UC than UB. The d-simplices can have
arbitrary weights, so constructing the states |cσ⟩ in general requires constructing arbitrary quantum
states with real coefficients. However, the weights on the simplices do not affect whether or not a
cycle is null-homologous. Therefore, we can always run our null-homology test on the unweighted
complex; the trade-off is that the effective resistance or effective capacitance might be higher in the
unweighted complex. We analyze the running time of the unweighted case in Section D.1.

We now analyze the complexity of constructing the initial state |w0⟩/∥|w0⟩∥. To construct the
dummy state, we start by adding an additional “d-cell” |∅⟩ to the complex with boundary |γ⟩
(really, we just add |γ⟩ as a column to ∂.) The new cell will have non-trivial overlap with |w0⟩, so
we can construct |w0⟩ by amplifying this component of |∅⟩. We outline this method in the proof of
Theorem D.10, but first, we state Lemma D.9 which is a generalization of the parallel formula for
effective resistance; its proof is nearly identical to the proof of Theorem B.2.

Lemma D.9. Let V = V1 ⊕ V2 be a vector space. Let A : V → U be a linear map, and let
A1 : U1 → V and A2 : U2 → V be the restriction of A to U1 and U2. Let |t⟩ ∈ imA1 ∩ imA2 ⊂ U .
If |s⟩ = A+|t⟩, |s1⟩ = A+

1 |t⟩, and |s2⟩ = A+
2 |t⟩, then

∥s∥2 ≤
(

1

∥s1∥2
+

1

∥s2∥2

)−1

Equality is achieved when imA1 ∩ imA2 = span{|t⟩}. In this case, |s⟩ = t|s1⟩ + (1 − t)|s2⟩ where
t = ∥s2∥2/(∥s1∥2 + ∥s2∥2).

Theorem D.10. Let Oγ be the oracle that takes Oγ : |0⟩ → |γ⟩. Let Tγ be the time it takes to
implement Oγ. The state |w0⟩ = ∂+|γ⟩ can be created in Õ((

√
1/Rγ(K)+

√
Rγ(K))(TB +TC +Tγ))

time.

Proof. We append |γ⟩ as a column to ∂ to create a new matrix ∂̂. Let |∅⟩ be index of the new column,
so ∂̂ = ∂ + |γ⟩⟨∅|. Let |w′

0⟩ = ∂̂+|γ⟩. We conclude that |∅⟩ = |w′
0⟩ + |w′⊥

0 ⟩ where |w′⊥
0 ⟩ ∈ ker ∂̂, as

the projection Πker ∂̂⊥ |∅⟩ = ∂̂+∂̂|∅⟩ = ∂̂+|γ⟩ = |ŵ0⟩.
We construct |w0⟩/∥|w0⟩∥ in two steps. First, we use amplitude amplification to amplify the |w′

0⟩
component of |∅⟩. We then use a second amplitude amplification to amplify the |w0⟩ component
of |w′

0⟩. These amplitude amplifications are nested, as we need to perform the first to create the
initial state for the second.

If we perform constant time phase estimation of |∅⟩ on the unitary Rker ∂̂ , then we can map
|∅⟩ to |0⟩|w′

0⟩ + |1⟩|w⊥
0 ⟩. We can then amplify the amplitude of |0⟩|w0⟩ part arbitrarily close to

|w0⟩/∥|w0⟩∥ using O(∥|w0⟩∥−1) calls to Rker ∂̂ .
We calculate ∥|w0⟩∥ using the formula from the lemma. The vector |∅⟩ has length 1, so Lemma

D.9 shows that

∥|w′
0⟩∥2 =

(
1

Rγ(K)
+ 1

)−1

=
Rγ(K)

Rγ(K) + 1
.

Thus, we need to perform the reflection Rker ∂̂ a total of O(∥|w0⟩∥−1) = O(
√

(Rγ(K) + 1)/Rγ(K))
times to create |ŵ0⟩/∥|ŵ0⟩∥.

The next step in our algorithm is to amplify the |w0⟩/∥|w0⟩∥ component of |w′
0⟩/∥|w′

0⟩∥. By
Lemma D.9, the state ∥|w′

0⟩∥ = t∥|w0⟩∥ + (1 − t)∥|∅⟩∥ for t = 1/(Rγ(K) + 1). Therefore, the
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|w0⟩/∥|w0⟩∥ component of |w′
0⟩/∥|w′

0⟩∥ has norm

t∥|w0⟩∥/∥|w′
0⟩∥ =

1

Rγ(K) + 1

√
Rγ(K)

√
Rγ(K) + 1

Rγ(K)

=

√
1

Rγ(K) + 1

To return the state |w0⟩/∥|w0⟩∥, we need to perform amplitude amplification again. We can
create the state |w′

0⟩ using the amplitude amplification from the previous two paragraphs with
O(
√

(Rγ(K) + 1)/Rγ(K)) applications of Rker ∂′ , and we can reflect across |∅⟩ in constant time as
it is a basis state. To create |w0⟩/∥|w0⟩∥, we need

O

(√
(Rγ(K) + 1)/Rγ(K)

√
(Rγ(K) + 1)

)
= O

(√
Rγ(K) +

√
1

Rγ(K)

)

applications of Rker ∂̂ .
We now argue that we can compute Rker ∂̂ in O(TC + TB + Tγ) time. As was the case with

Rker ∂ , we decompose Rker ∂̂ = M †
B̂
RÛ−MB̂ for space B̂ and Ĉ defined

B̂ = B ∪ {|b∅⟩ := |γ⟩}

Ĉ = span

{
|cσ⟩ :=

1√
deg(σ) + 1

|σ⟩|∅⟩+
∑
σ⊂τ

w(σ)√
deg(σ) + 1

|σ⟩|τ⟩ : σ ∈ Kd−1

}
.

The unitaries MB̂ MĈ , and RÛ− are defined analogously to MB and MC . We can implement the
unitary version of these matrices UB̂ in O(TB + Tγ) and UĈ in O(TC).

We now summarize this section in the following theorem.

Theorem D.11. Let K be a simplicial complex, γ ∈ Cd−1(K) a null-homologous cycle, and K(x) ⊂
K be a simplicial complex. There is a quantum algorithm for deciding if γ is null-homologous in
K(x) that runs in time

Õ

(√
(d+ 1)Rmax(γ)Cmax(γ)

λ̃min

(
√
d+ TC) +

(√
1

Rγ(K)
+
√
Rγ(K)

)
(
√
d+ TC + Tγ)

)

where Rmax is the maximum effective resistance of γ in any subcomplex K(y) and Cmax(γ) is the
maximum effective capacitance γ in any subcomplex K(y) and λ̃min is the smallest eigenvalue of the
normalized d up-Laplacian.

D.1 Special cases.

We now consider a few special cases of the null-homology span program. These special cases
will allow us to replace the terms TB and Tγ in Theorem D.11 with concrete running times.
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Unweighted simplicial complexes We now consider the case where there are no weights on the
d-simplices, or equivalently, when w(τ) = 1 for each d-simplex τ . While computing MC is hard in
general, in the unweighted case, we can implement the unitary MC using a straightforward oracle.
For a (d−1)-simplex σ that is incident to the d-simplices {τ1, . . . , τm}, the up-incidence array
is the oracle is the function that maps h : |τ⟩|j⟩|0⟩ → |τ⟩|j⟩|0⟩. By Lemma D.7, the up-incidence
array can be used to compute |cτ ⟩ = 1√

m
|τ⟩|δτ⟩ in O(

√
m) time. The unitary MC computes the

state |cσ⟩ in parallel, so computing MC will take
√
dmax queries, where dmax = maxτ∈Cd−1(K) deg(τ)

time. This is summarized in the following lemma.

Lemma D.12. If K is an unweighted simplicial complex, the unitary UC can be implemented in
O(
√
dmax) queries to the up incidence array and TC = Õ(

√
dmax) = Õ(

√
n0) time.

Additionally, if K is an unweighted complex, we can upper bound the quantity 1
Rγ(K) .

Lemma D.13. Let K be an unweighted simplicial complex with n0 vertices, and let γ be a unit-
length null-homologous (d− 1)-cycle in K. Then 1

Rγ(K) ≤ n0.

Proof. Recall that in an unweighted simplicial complex that Rγ(K) = γT (Lup
d−1)

+γ. As the eigen-
values of Lup

d−1 are bounded above by n0 (Theorem 2.4), then the non-zero eigenvalues of (Lup
d−1)

+

are bounded below by 1
n0

. As γ ∈ imLup
d−1, then γT (Lup

d−1)
+γ is bounded below by the smallest

non-zero eigenvalue of (Lup
d−1)

+, i.e 1
n0

. Therefore, 1
Rγ(K) ≤ n0

Cycle is the boundary of a d-simplex. We now consider the case that the input cycle γ is the
boundary of a d-simplex. In this case, we can implement the oracle Oγ with the down incidence
array used to implement MB. We get the same running time for Tγ as TB.

Lemma D.14. If γ is the boundary of a d-simplex, there is a quantum algorithm implementing Oγ

in O(
√
d) queries to the down incidence array and Tγ ∈ Õ(

√
d) ⊂ Õ(

√
n0) time.

Summing Up. If we combine our bounds for the case where our complex is unweighted (Lemma D.12
and Lemma D.13) and the cycle is the boundary of d-simplex (Lemma D.14) with the bound of the
time complexity (Theorem D.11), we get the following bound on the time complexity.

Theorem 4.10. Let K be an unweighted simplicial complex with n0 vertices, let γ ∈ Cd−1(K) a
null-homologous cycle in K, and K(x) ⊂ K be a simplicial complex. Furthermore, assume that γ
is the boundary of a d-simplex and the complex is unweighted. There is a quantum algorithm for
deciding if γ is null-homologous in K(x) that runs in time

Õ

(√
Rmax(γ)Cmax(γ)

λ̃min

n0 +
√
Rγ(K)n0

)
,

where Rmax(γ) is the maximum finite effective resistance Rγ(L) of γ in any subcomplex L ⊂ K,
Cmax(γ) is the maximum finite effective capacitance Cγ(L,L) in any subcomplex K(x), and λ̃min is
the spectral gap of the normalized up-Laplacian L̃up

d−1[K].

D.2 Space Complexity.

We now comment on the space complexity of our algorithm. The inner product space Cd−1(K)⊕
Cd(K) has dimension nd−1nd ∈ O(

(
n0

d

)(
n0

d+1

)
), so vectors in this space can be represented with
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O(log(
(
n0

d

)(
n0

d+1

)
)) = O(dn) qubits. Additionally, the phase estimation step from Lemma D.5 takes

O(log(1/λ̃min)) ancillary qubits, which is O(dnd) qubits by the bounds on the normalized spec-
tral gap (Lemma 2.5 and Theorem 1.2). Finally, the outer phase estimation of RH(x)RkerA takes
O(log (Rmax(γ)Cmax(γ))) qubits. Other gates require polylogarithmic ancillary qubits. The space
complexity of our algorithm is comparable to some other QTDA algorithms, as other QTDA algo-
rithms require O (log(1/λmin)) to perform phase estimation of the combinatorial Laplacian [29].

E Construction of the Building Block.

Figure 6: Left to Right: Stellar subdivision, prism, and stellar prism of a triangle.

In this section, we formally describe the “building block” Bd that we use to construct the
simplicial complexes Bnd , Pn

d , and Qn
d with exponentially-large effective resistance and capacitance

in Section 5.2. A more intuitive, but informal, description of the building block can be found in
Section 5.2

The building block Bd is constructed using two constructions from algebraic topology: the stellar
subdivision and the prism. We will combine these two constructions to make a new construction
we call the stellar prism. The building block Bd is then a quotient of the stellar prism. This section
will first describe the stellar subdivision, prism, and stellar prism. We then present the construction
of Bd and prove some of its relevant properties.

E.1 Stellar Subdivision.

LetK be a d-dimensional simplicial complex. The stellar subdivision ofK is the d-dimensional
simplicial complex SK that is the union of the (d−1)-skeleton of K and, for each d-simplex σ ∈ Kd,
the set of simplices {τ ∪ {vσ} : τ ⊊ σ}, where vσ is a new vertex. See Figure 6. The property of
the stellar subdivision that is key to our construction is that it increases the number of d-simplices
in the simplicial complex.

Observation E.1. Let K be a simplicial complex with nd d-simplices. Then SK has d · nd d-
simplices.

We can map chains from our original complex K to chains in its stellar subdivision. For each
d-simplex σ ∈ Kd and any integer k, we define a map bσ : Ck(K) → Ck+1(SK). Let τ ⊊ σ,
and suppose that vσ is the (i + 1)st element of τ ∪ {vσ} with respect to the ordering on the
vertices9; that is, if τ = {v0, . . . , vk}, then τ ∪ {vσ} = {v0, . . . , vi−1, vσ, vi, . . . , vk}. We define
bσ(τ) = (−1)i · (τ ∪ {vσ}) for all k-simplices of the form τ ⊊ σ, and bσ(φ) = 0 for any other
k-simplex φ.

9It is worth noting that it is arbitrary where vσ is in the ordering of the vertices, so i can be any number in the
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Lemma E.2. Consider bσ : Ck(K) → Ck+1(SK) as defined above. The map bσ satisfies ∂ ◦ bσ =
I− bσ ◦ ∂.

Proof. As bσ is a linear map, it suffices to prove this for the basis k-chains τ ∈ Ck(K). The
boundary of bσ(τ) is

∂(bσ(τ)) =(−1)i · ∂(τ ∪ {vσ})

=(−1)i

 i−1∑
j=0

(−1)j · (τ ∪ {vσ} \ {vj}) + (−1)i · τ +

k∑
j=i

(−1)j+1 · (τ ∪ {vσ} \ {vj})


=τ + (−1)i

 i−1∑
j=0

(−1)j · (τ ∪ {vσ} \ {vj}) +

k∑
j=i

(−1)j+1 · (τ ∪ {vσ} \ {vj})


We claim that the second term in this sum equals (−1) · bσ(∂τ). Observe that for j < i, vσ will be
the ith vertex of τ ∪{vσ}\{vj}. Likewise, for i ≥ j, vσ will be the (i+1)st vertex of τ ∪{vσ}\{vj}.
Therefore, we have that

(−1)i
[ i−1∑
j=0

(−1)j · (τ ∪ {vσ} \ {vj}) +
k∑

j=i

(−1)j+1 · (τ ∪ {vσ} \ {vj})
]

=(−1)i
[ i−1∑
j=0

(−1)j(−1)i−1bσ(τ \ {vj}) +
k∑

j=i

(−1)j+1(−1)ibσ(τ \ {vj})
]

=(−1)
[ k∑
j=0

(−1)jbσ(τ \ {vj})
]

= (−1) · bσ(∂τ)

Using the maps bσ, we now define another map S∗ : Ck(K)→ Ck(SK). For k < d, we define the
map S∗ : Ck(K)→ Ck(SK) just to be the inclusion map. For k = d, define S : Cd(K)→ Cd(SK)
on each d-simplex σ = {v0, . . . , vd} as S∗(σ) = bσ(∂σ).

Lemma E.3. Consider S∗ : Ck(K) → Ck(SK) as defined above. The map S∗ satisfies ∂ ◦ S∗ =
S∗ ◦ ∂.

Proof. For i < d, this is obvious as S∗ is the inclusion map. For i = d, this follows from Lemma
E.2 as ∂S∗(σ) = ∂bσ(∂σ) = ∂σ − bσ∂∂(σ) = ∂σ = S∗∂σ.

E.2 Prisms.

The prism of a simplicial complex K is a triangulation of the space K × [0, 1]. To define the
prism of K, we will define the prism of a single simplex σ ∈ K; the prism of the entire complex K
is then the union of the prism of its simplices, i.e. PK = ∪σ∈KPσ. See Figure 6.

Assume that σ = {v0, . . . , vd}. The prism of σ is a (d + 1)-dimensional simplicial com-
plex Pσ with vertices σ × {0, 1}. The prism contains all simplices of the form τ × {0} and

range 0 ≤ i ≤ k. Lemmas E.2 and E.3 summarize the relevant properties of the stellar subdivision for our paper,
and as we will see, these lemmas will hold wherever vσ is in the vertex order, so long as the map bσ is defined
appropriately.

50



τ × {1} for τ ⊂ σ. The remaining simplices of Pσ are the closure of the (d + 1)-simplices
{(v0, 0), . . . , (vj , 0), (vj , 1), . . . , (vd, 1)} for 0 ≤ j ≤ d. We denote such a simplex

σj := {(v0, 0), . . . , (vj , 0), (vj , 1), . . . , (vd, 1)}.

Note that for a paired of nested simplices τ ⊂ σ, their prisms are also nested, i.e. Pτ ⊂ Pσ.
As was the case for stellar subdivision, we will define several maps between chains in K and

chains in PK. We abuse notation and define K × {1} := {σ × {1} : σ ∈ K}. The first map
I1 : Ck(K)→ Ck(PK) maps chains in K to chains in K×{1}. Specifically, for a d-simplex σ ∈ Kd,
we define I1(σ) = σ × {1}. We define a map I0 analogously. The following lemma is obvious.

Lemma E.4. Consider Ii : Ck(K) → Ck(PK) as defined above for i = 0, 1. The map Ii satisfy
∂ ◦ Ii = Ii ◦ ∂ for i = 0, 1.

We now define a map P∗ : Ck(K) → Ck+1(PK). Specifically, for a k-simplex σ ∈ K with
σ = {v0, . . . , vk}, the corresponding (k + 1)-chain is defined P∗(σ) =

∑k
i=0(−1)iσi.

Lemma E.5. Consider P∗ : Ck(K)→ Ck+1(PK) as defined above. The map P∗ satisfies P∗ ◦ ∂ +
∂ ◦ P∗ = I1 − I0.

Proof. The key points of this proof are essentially identical to those provided by Hatcher [32] in
the proof of Theorem 2.10.

E.3 Stellar Prisms.

Now we propose a way of combining stellar subdivisions and prisms that we call the stellar
prism. Intuitively, the stellar prism is a triangulation of the space K × [0, 1] where the bottom
copy K × {0} is triangulated the same way as K and the top copy K × {1} is triangulated using
the stellar subdivision. See Figure 6.

We first define the stellar prism of a d-simplex; the stellar prism of a d-dimensional simplicial
complex K is the union of the prism of the (d−1)-skeleton and the stellar prisms of the d-simplices,
i.e. SPK = PKd−1 ∪σ∈Kd

SPσ.
Let σ be a d-simplex. The stellar prism of σ is the (d+ 1)-dimensional simplicial complex SPσ

described as follows. The vertices of SPσ are (σ × {0, 1})∪{vσ}, where vσ is a new vertex. For any
simplex τ ⊊ σ, SPσ contains both the complex Pτ and all simplices of the form {φ∪{vσ} : φ ∈ Pτ}.
Additionally, SPσ contains the d-simplex σ × {0} and the (d+ 1) simplex (σ × {0}) ∪ {vσ}. If we
let vσ×{1} = vσ, note that SPσ contains the subdivision S(σ × {1}).

We now define a linear map between SP∗ : Ci(K) → Ci+1(SPK). For i < d, we simply define
SP∗ = P∗. For i = d, we define SP∗(σ) = −bσI0(σ)− bσP∗∂(σ)

Lemma E.6. Consider SP∗ : Ci(K) → Ci+1(SPK) as defined above. The map SP∗ satisfies
∂SP∗ + SP∗∂ = S∗I1 − I0
Proof. For i < d, this follows from Lemma E.5 and the fact that SP∗ = P∗ and S∗ = I. We now
verify this for i = d.

We will analyse the boundary of ∂SP∗(σ). We find that

∂SP∗(σ) = −∂bσI0(σ)− ∂bσP∗∂(σ). (1)

We analyse the two terms in this sum. Using Lemma E.2 and E.4, the first term of Equation (1)
evaluates to

∂bσI0(σ) = I0(σ)− bσ∂I0(σ)

= I0(σ)− bσI0∂(σ)
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Using Lemma E.5, the second term of Equation (1) evaluates to

∂bσP∗∂(σ) =P∗∂(σ)− bσ∂P∗∂(σ)

=P∗∂(σ)− bσ(I1 − I0 − P∗∂)∂(σ)

=P∗∂(σ)− bσI1∂(σ) + bσI0∂(σ) + bσP∗∂∂(σ)

=P∗∂(σ)− bσI1∂(σ) + bσI0∂(σ)

The first term in this sum is P∗∂(σ) = SP∗∂(σ) as P∗ = SP∗ for all dimensions less than d. The
term bσI1∂(σ) = bσ∂I1(σ) = S∗I1(σ). Combining the two terms of Equation (1), we find that

∂SP∗(σ) =− ∂bσI0(σ)− ∂bσP∗∂(σ)

=− (I0(σ)− bσI0∂(σ))− (P∗∂(σ)− S∗I1(σ) + bσI0∂(σ))

=− I0(σ)− P∗∂(σ) + S∗I1(σ)

E.4 Building Block.

We now describe the building block Bd. Let ∆d be the closure of the d-simplex σ = {v0, . . . , vd},
and let ∂∆d denote the (d − 1)-dimensional simplicial complex ∆d \ {σ}. The building block Bd

is derived from the stellar prism SP (∂∆d). Denote the (d − 1)-simplex σ × {1} \ {(vi, 1)} as σi.
Observe that the vertices of SP (∂∆d) are (σ × {0, 1}) ∪ {vσi : 0 ≤ i ≤ d}. The building block Bd

is the simplicial complex obtained by replacing each vertex vσi in SP (∂∆d) with the vertex (vi, 1).
See the main body of the text for a more intuitive description (but less formal) of Bd.

We now prove the relevant properties of Bd.

Lemma 5.10. Let σ = {v0, . . . , vd} be a set. There is a d-dimensional simplicial complex Bd with
vertices σ × {0, 1} such that

1. Bd has Θ((d+ 1)3) d-simplices.

2. there is a d-chain f ∈ Cd(Bd) such that

(i) ∂f = ∂(σ × {0}) + d · ∂(σ × {1})
(ii) ∥f∥2 ∈ Ω((d+ 1)3)

Proof of Lemma 5.10, Part 1. To keep track of the simplices, we introduce some notation. Recall
that σi = σ \ {vi}. Additionally, we will denote σij = σ \ {vi, vj}. For 0 ≤ k ≤ d, denote the set

σk := {(v0, 0), . . . , (vk, 0), (vk, 1), . . . , (vd, 1).

Note that σk is not a simplex in any of the complexes we consider, but some of its subsets will be.
For distinct values i, j ̸= k, denote the simplex σkij := σk \ {(vi, 0), (vi, 1), (vj , 0), (vj , 1)}. Note that
the subtraction in this definition is redundant, as only one of the vertices (vi, 0) or (vi, 1) will be
contained in σk.

First, we count the number of d-simplices in SP (∂∆d). Fix a (d− 1)-simplex σi, and consider
a (d − 2)-simplex σij in its boundary. The (d − 1)-simplices in Pσij are those of the form σkij
for 0 ≤ k ≤ d, k ̸= i, j. The d-simplices in SPσi are those simplices of the form σkij ∪ {vσi}.
Additionally, SP (∂∆d) contains those simplices (σi × {0}) ∪ {vσi}. Therefore, the number of d-
simplices in SP (∂∆d) equals the number of choices of i, j, and k, plus d+ 1 for the d-simplices of
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the form (σi×{0})∪{vσi}. In total, there are (d+ 1) · d · (d− 1) + (d+ 1) ∈ Θ((d+ 1)3) d-simplices
in SP (∂∆d)

Now we count the number of d-simplices in Bd. As we will see, replacing the vertex vσi will
reduce the number of d-simplices, but only by a constant factor. In the case that i > k, then
σkij ∪ {(vi, 1)} = σkj , but in the case that i < k, no such simplification is possible. Therefore, the

(d + 1)-simplices in Bd fall into two sets: {σkj : 0 ≤ k < d, j ̸= k} and {σkij ∪ {(vi, 1)} : 0 ≤
k ≤ d, j ̸= k, i < k}. Note that the simplices σkj may arise from different stellar prisms SPσi for

different values of i, whereas the simplices of the form σkij ∪ {vi} only arise from the stellar prism

SPσi. However, as there are O((d + 1)2) simplices of the form σkj , O((d + 1)3) simplices of the

form σkij ∪ {(vi, 1)}, and d + 1 simplices of the form (σi × {0}) ∪ {(vi, 1)}, we conclude that there

are Θ((d+ 1)3) d-simplices in Bd.

Proof of Lemma 5.10, Part 2. The simplicial complex Bd is the one described in the paragraphs
preceding this proof, which is derived from the simplicial complex SP (∂∆d) by replacing some
vertices. We first describe the chain f in the complex SP (∂∆d). We then analyse this chain after
we replace the vertices.

Let σ = {v0, . . . , vd}. The chain f is defined f := SP∗(∂σ). It is important to note that while
the simplex σ is not contained in ∂∆d, its boundary ∂σ is still a well-defined (d − 1)-chain in
Cd−1(∂∆d). By Lemma E.6, we know that

∂f = ∂SP∗(∂σ) =S∗I1∂(σ)− I0∂(σ)− SP∗∂∂(σ)

=S∗I1∂(σ)− I0∂(σ)

We know I0(∂σ) = ∂(σ × {0}) by the definition of I0, so to finish the proof, we only need to verify
that S∗I1∂(σ) = −d · ∂(σ × {1}) after we replace the vertices.

For this, we separately consider the value of f on each d-simplex in its support. Recall the
notation σi := σ \ {vi}. We can expand this chain using the definition of the boundary map as

S∗I1(∂σ) =
d∑

i=0

(−1)iS∗I1(σi).

Let us now investigate the terms S∗I1(σi).
Recall that the operator bσi assigns different signs to a simplex depending on where vσi is in the

order of the simplex’s vertices, so assume the vertex vσi is ordered between (vi−1, 1) and (vi+1, 1)
in the ordering of the simplices. In this case, vσi is the ith vertex in the simplex I1(σij)∪ {vσi} for
j < i and in the (i+ 1)st position for j > i. Therefore

S∗I1(σi) =bσi∂I1(σi)

=bσi

 i−1∑
j=0

(−1)jI1(σij) +

d∑
j=i+1

(−1)j−1I1(σij)


=

i−1∑
j=0

(−1)j(−1)i−1I1(σij) ∪ {vσi}+

d∑
j=i+1

(−1)j−1(−1)iI1(σij) ∪ {vσi}

=(−1)i−1

 i−1∑
j=0

(−1)jI1(σij) ∪ {vσi}+

d∑
j=i+1

(−1)jI1(σij) ∪ {vσi}
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Therefore, when we replace the vertex vσi with (vi, 1), we find that

S∗I1(∂{v0, . . . , vd}) =
d∑

i=0

(−1)

 i−1∑
j=0

(−1)jI1(σj) +
d∑

j=i+1

(−1)jI1(σj)


Note that each term I1(σj) appears d times in this sum, once for each i ̸= j. Moreover, each time
the term appears, it has sign (−1)j . We conclude that S∗I1(∂{v0, . . . , vd}) = −d · ∂(σ × {1}), as
claimed

We now analyze the size of f . We know that f = SP∗(∂σ). We can analyze this sum linearly
as

f = SP∗(∂σ) =

d∑
i=0

(−1)iSP∗(σi)

=
d∑

i=0

(−1)i(−bσiI0(σi)− bσiP∗∂(σi))

By the first term in the sum, the chain f assigns value ±1 to each d-simplex (σi × {0}) ∪ {vi}.
Likewise, were we to expand the second sum, we would find that f assigns value ±1 to all simplices
of the form σkij ∪ {(vi, 1)}. By Part 1 of the lemma, we know there are Θ((d+ 1)3) such simplices.

We conclude that the squared norm ∥f∥2 is Ω((d+ 1)3).

F Collapsibility of the complex.

In this section, we will prove that the complexes Bnd and Pn
d from Section 5.2 collapse to (d−1)-

dimensional subcomplexes. This will imply that ker ∂d[Bnd ] = 0 and ker ∂d[Pn
d ] = 0.

F.1 Preliminaries.

In this section, we introduce the necessary background on collapsiblity.
A (d − 1)-simplex τ is a face of a d-simplex σ iff τ ⊂ σ. The pair (σ, τ) is a collapse pair

in K iff (i) τ is a face of σ, and (ii) τ is not the face of any other simplex in K. The complex
K collapses to the complex K\{σ, τ} if (σ, τ) is a collapse pair in K. More generally, a complex
K collapses into a complex K ′′ if there exists a complex K ′ such that K collapses to K ′ and K ′

collapses to K ′′. A complex K is collapsible if it collapses into a single vertex.
By the inductive definition of collapsibilty, whenever a complex K collapse into a complex L,

there exists a sequence of complexes K = K0 ⊃ K1 ⊃ . . . ⊃ Kk = L such that for any 0 < i ≤ k,
Ki = Ki−1\{σi, τi} where (σi, τi) is a collapse pair in Ki−1. This sequence is called a collapsing
sequence.

We now give two facts about consequences of collapsibility we use in this paper. Lemma F.1
is a standard fact about collapsibility we state without proof. Lemma F.2 is a non-standard fact
about collapsibility, but one that will come as no surprise to those familiar with collapsibility.

Lemma F.1. Let L ⊂ K be simplicial complexes such that K collapses to L. Then L is a defor-
mation retract of K. Consequently, L and K have isomorphic homology groups in all dimensions.

Lemma F.2. Let L ⊂ K be simplicial complexes such that K collapses to L. Let γ be a (d−1)-cycle
in L. Then γ is null-homologous in L if and only if γ is null-homologous in K.
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Proof of Lemma F.2. Suppose that γ is null-homologous in L, and let fL be a d-chain in Cd(L)
such that ∂fL = γ. We can extend f to a d-chain fK in K by setting fK(σ) = 0 for any d-simplex
σ ∈ Kd \ Ld. It is straightforward to see that ∂fK = γ by the linearity of the boundary map, so γ
is null-homologous in K

Conversely, suppose that γ is null-homologous in K, and let fK be a d-chain in Cd(K) such
that ∂fK = γ. Consider a collapsing sequence K = K0 ⊃ K1 ⊃ . . . ⊃ Kk = L with collapses pairs
(σi, τi). We will prove by induction on i that there is a chain fKi ∈ Cd(Ki) for 0 ≤ i ≤ k such that
∂fKi = γ. This will imply that γ is null-homologous in L.

For the base case of i = 0, the chain fK0 = fK satisfies the claim by assumption. Now suppose
there is a chain fKi ∈ Cd(Ki) such that ∂fki = γ. Consider the collapse pair (σi, τi). In the case
that neither σi nor τi are d-simplices, then Ki and Ki+1 have the same set of d-simplices, so fKi

is a valid d-chain in Cd(Ki) and we set fKi+1 = fKi . In the case that σi is a d-simplex, then τ
is a (d − 1)-simplex. As τ ̸∈ Ld−1, then γ(τ) = 0. This implies that it must be the case that
fKi(σi) = 0. If not, then ∂fKi(σi) = ±fKi(σi) (a contradiction) as the only d-simplex incident to
τi is σi. Therefore, we can set fKi+1 = fKi . Finally, in the case that τi is a d-simplex, then σi is
a (d + 1)-simplex. In this case, we set fKi+1 = fKi − (∂σi(τi)) · (fKi(τi)) · ∂σi. (Note that in this
expression, ∂σi(τi) = ±1, fKi(σi) is a scalar, and ∂σi is a d-chain.) We need to verify two things
about fKi+1 : (1) ∂fKi+1 = γ and (2) fKi+1(τi) = 0. Condition (1) is easy to verify as

∂fKi+1 = ∂fKi − (∂σi(τi)) · (fKi(σi)) · ∂∂σi
= ∂(fKi) (as ∂∂ = 0)

= γ (Induction Hypothesis)

Condition (2) is also straightforward to verify.

fKi+1(τi) = fKi(τi)− (∂σi(τi)) · (fKi(τi)) · ∂σi(τi)
= fKi(τi)− fKi(τi) (as (∂σi(τi))

2 = 1)

= 0

Therefore, fKi+1 is a d-chain in Cd(Ki+1) with boundary γ.
In all three cases, we can find a d-chain fKi+1 such that ∂fKi+1γ. This proves that γ is null-

homologous in L.

F.2 The main lemma.

In this section, we will prove the following lemmas about the complexes Bnd and Pn
d from Section

5.2.

Lemma F.3. The simplicial complex Bnd collapses to a (d− 1)-dimensional subcomplex.

Lemma F.4. The simplicial complex Pn
d collapses to a (d− 1)-dimensional subcomplex.

For this, we need to prove an auxiliary lemma about the building block from Section E.

Lemma F.5. There is a collapsing sequence that collapses all d-simplices of Bd. Furthermore, no
(d− 1)-simplices that are subsets of σ × {1} are involved in the collapsing sequence.

Proof. This proof relies on notation introduced in the proof of Lemma 5.10 Part 1. Recall that the
d-simplices of Bd are of the form {σkj : 0 ≤ k < d, j ̸= k}, {σkij ∪ {(vi, 1)} : 0 ≤ k ≤ d, j ̸= k, i < k},
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and {(σi×{0})∪{(vi, 1)} : 0 ≤ i ≤ d}. We will collapse these d-simplices using the (d−1)-simplices
of the form σkj \{(vk, 1)}, σkij∪{(vi, 1)}\{(vk, 1)}, and σi×{0}. To define an appropriate collapsing
sequence, we need to know which d-simplices are incident to which (d− 1)-simplices.

The (d− 1)-simplices σi × {0} are incident to exactly one d-simplex: (σi × {0}) ∪ {(vi, 1)}. We
can see this as any other d-simplex will have two vertices with second coordinate 1.

The simplices σkij ∪ {(vi, 1)} \ {(vk, 1)} are incident to exactly two d-simplices. It is straightfor-

ward to verify that σkij ∪ {(vi, 1)} \ {(vk, 1)} is incident to σkij ∪ {(vi, 1)} and σk+1
ij ∪ {(vi, 1)} for

j ̸= k, k + 1 and k < d; we can see this as σkij ∪ {(vi, 1)} \ {(vk, 1)} = σk+1
ij ∪ {(vi, 1)} \ {(vk+1, 0)}.

For the case of special case of j = k + 1, we can see that σki(k+1) ∪ {(vi, 1)} \ {(vk, 1)} = σk+2
i(k+1) ∪

{(vi, 1)} \ {(vk+2, 0)}, so σki(k+1) ∪ {(vi, 1)} \ {(vk, 1)} is instead incident to σki(k+1) ∪ {(vi, 1)} and

σk+2
i(k+1) ∪ {(vi, 1)}. Finally, when k = d, the simplices σdij ∪ {(vi, 1)} \ {(vd, 1)} are incident to

σdij ∪ {(vi, 1)} and (σi × {0}) ∪ {(vi, 1)}.
Lastly, the simplex σkj \ {(vk, 1)} is incident to exactly three d-simplices. We see that σkj \

{(vk, 1)} = σk+1
j \ {(vk+1, 0)} = σk+2

(k+1)j ∪ {(vk+1, 1)} \ {(vk+2, 0)} when k ̸= j + 1 and k < d − 1,

and σkk+1 \ {(vk, 1)} = σk+2
k \ {(vk+2, 0)} = σk+3

(k+2)j ∪ {(vk+2, 1)} \ {(vk+3, 0)} when k = j + 1 and
k < d − 1. Finally, we consider the case of k = d − 1. By the construction of Bd, we know
that σd−1

j = σd−1
ij for some i. We know that i > d − 1, so we conclude that i = d. This implies

σd−1
j \ {(vd−1, 1)} = σd−1

dj ∪ {(vd, 1)} \ {(vd−1, 1)} is incident to the two d-simplices: σd−1
j and

(σd × {0}) ∪ {vd, 1}
We now describe a collapsing sequence for B. We know that σi × {0} is only incident to

σi × {0} ∪ {(vi, 1)}. We therefore collapse each simplex σi × {0} onto σi × {0} ∪ {(vi, 1)}.
Now fix 0 ≤ i ̸= j ≤ d. For k starting at d and iterating backwards to i, we can collapse the

simplices σkij ∪ {(vi, 1)} \ {(vk, 1)} into the simplex σkij ∪ {(vi, 1)}; this collapse is valid as the other

simplex incident to σkij ∪ {(vi, 1)} \ {(vk, 1)} was collapsed in a previous iteration. These collapses

remove all simplices of the form σkij ∪ {(vi, 1)}.
Now fix an integer j. For k starting at d− 1 and iterating backwards to 0 (and skipping j), we

will collapse σkj \{(vj , 1)} into σkj . Initially, this is a valid collapse as the simplex σd−1
j \{(vd−1, 1)} is

only incident to σd−1
j and (σd×{0})∪{(vd, 1)}, and the second simplex has already been collapsed.

For the other values of k, the only simplices incident to σkj \ {(vk, 1)} were either removed in the
previous iteration or in the series of collapses from the previous paragraph.

Finally, no (d− 1)-simplex in K ×{1} was collapsed, as all of the simplices that were collapsed
have at least one vertex with second coordinate 0.

We can now prove Lemmas F.3 and F.4.

Proof of Lemma F.3. Recall that Bnd is constructed by gluing together a d-simplex, denoted B0
d ,

and n copies of Bd, denoted Bi
d for 1 ≤ i ≤ n. We will therefore prove that we can collapse each of

the d-simplices of Bi
d for n ≥ i ≥ 1 by induction on i in reverse order.

For the base case of i = n, we know we can collapse each of the d-simplices of Bn
d . By Lemma

F.5, we know we can collapse all d-simplices Bd, and the collapsing sequence does not collapse any
(d − 1)-simplex on the vertices σ × {1}. As the only (d − 1)-simplices in Bn

d that are incident to
other d-simplices are simplices in σ × {n− 1}, then we know we can collapse all d-simplices of Bn

d .
Inductively, we know that none of the (d− 1)-simplices needed to collapse Bi

n have previously
been collapsed, as the only (d − 1)-simplices of Bi

n that are (d − 1)-simplices of Bj
n for j > i are

subsets of σ × {1} in Bi+1
n , which we know have not been collapsed. Finally, we can collapse the

unique d-simplex in B0
d , as none of the (d− 1)-simplices of B0

d have previously been collapsed.
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Proof of Lemma F.4. The proof of this theorem is nearly identical to the proof of Lemma F.3
above, so we exclude details and instead sketch the proof. Recall that Pn

d is constructed by gluing
together n copies of Bd, denoted Bi

d for 1 ≤ i ≤ n. As in the previous proof, we can prove that we
collapse each of the d-simplices of Bi

d for 1 ≤ i ≤ n by induction. This works because, inductively,
the only (d−1)-simplices in Bi

d that are incident to d-simplices outside of Bi
d are subsets of σ×{1}.

As in the previous proof, this is sufficient to prove that we can collapse the d-simplices of Bi
d.
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