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Abstract
In this paper, we consider the problem of detecting unknown
cyberattacks from audit data of system-level events. A key
challenge is that different cyberattacks will have different sus-
picion indicators, which are not known beforehand. To ad-
dress this we consider a multi-view anomaly detection frame-
work, where multiple expert-designed “views” of the data are
created for capturing features that may serve as potential in-
dicators. Anomaly detectors are then applied to each view
and the results are combined to yield an overall suspicious-
ness ranking of system entities. Unfortunately, there is often
a mismatch between what anomaly detection algorithms find
and what is actually malicious, which can result in many false
positives. This problem is made even worse in the multi-view
setting, where only a small subset of the views may be rele-
vant to detecting a particular cyberattack. To help reduce the
false positive rate, a key contribution of this paper is to in-
corporate feedback from security analysts about whether pro-
posed suspicious entities are of interest or likely benign. This
feedback is incorporated into subsequent anomaly detection
in order to improve the suspiciousness ranking toward enti-
ties that are truly of interest to the analyst. For this purpose,
we propose an easy to implement variant of the perceptron
learning algorithm, which is shown to be quite effective on
benchmark datasets. We evaluate our overall approach on real
attack data from a DARPA red team exercise, which include
multiple attacks on multiple operating systems. The results
show that the incorporation of feedback can significantly re-
duce the time required to identify malicious system entities.

1 Introduction
The frequency of cyberattacks is rapidly increasing in all
sectors of personal, enterprise, government, and medical
computer systems. While there are many effective tools for
detecting and mitigating known attacks, tools for detecting
novel attacks are still unreliable. While fully automated de-
tection of cyberattacks is a clear goal for the future, a more
realistic and important near-term goals is to develop security
systems that interact with security analyst in order to dis-
cover malicious entities as quickly as possible. In this paper,
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we move toward such a system by developing an approach
for interactively ranking system entities, such as processes,
files, and netflows (network sockets), according to their level
of suspiciousness. In particular, our system analyzes streams
of system-level audit data from a host machine in order to
determine the most suspicious entities, which can be pre-
sented to an analyst for further investigation.

A traditional problem with such security systems is the
high false positive rates, where many benign system entities
are presented to the analyst. This is due to the fact that the
event streams corresponding to an attack are usually buried
under a huge number of other benign system events gener-
ated by normal host activity. This problem is made more dif-
ficult due to the fact that we would like a security approach
to be effective across many host systems, which will each
exibit unique behaviors. In order to address this challenge,
we propose an adaptive approach, where feedback from a
security analyst is used to accelerate the rate by which truly
malicious entities are discovered.

In particular, we propose an approach based on multi-
view anomaly detection with feedback. The approach is
based on first designing a set of data views that each extract
certain features from the audit data that may indicate ma-
licious entities. We then use a state-of-the-art anomaly de-
tector to extract signals from these views and later combine
them to yield an overall suspiciousness ranking of the sys-
tem entities. Unfortunately, the baseline view combination
approach generates too many false positives due to unsuper-
vised nature of the anomaly detectors. The main contribution
of this paper is to show that by incorporating a small amount
of expert feedback, which indicates whether proposed sys-
tem entities are benign or malicious, the time required to
identify malicious entities can be significantly accelerated.
For this purpose, we develop a variant of the perceptron
learning algorithm that adapts the multi-view anomaly de-
tector to more effectively score entities in accordance with
the feedback.

We demonstrate our approach on real attack data collected
from a DARPA red team exercise, which contains multiple
attacks on multiple operating systems, over multiple days.



The results show that feedback allows for malicious entities
to be discovered significantly earlier than when no feedback
is used by the system.

Related Work. Host based malicious system behavior or
intrusion detection from audit data using anomaly detection
is not a new concept. A lot of works, for example (Dong et
al. 2017; Forrest et al. 1996; Gao, Reiter, and Song 2004;
Sekar et al. 2001; Shu, Yao, and Ramakrishnan 2015), has
been devoted to it. The major focus of these works were on
learning normal behavior from sequences of system calls or
execution control flow. The approaches show promise but
are prone to high false positive rates, which hinders their use.
Our proposed approach is fundamentally different in that we
start by recognizing the fundamental difficulty of achieving
low false positive rates using fixed detection schemes across
a wide range of host system. By adapting the detection sys-
tem based on analyst feedback, we aim to provide a more
robust system that can quickly be tuned to be effective on
any given host system. To the best of our knowledge there is
no prior work that aims to incorporate analyst feedback into
a machine-learning based detection system.

2 System Overview
Figure 1 shows the high-level architecture of our overall sys-
tem. The input to our system is an audit stream of system
level events from the host being monitored. As described
in Section 3, the data format is operating system indepen-
dent, which means our system can be host agnostic. This
data stream is processed in real-time by our data ingestor
(Section 3), which produces a graph database representation
of the data for later access by system analysts. The ingestor
also computes a set of “data views”, which are designed by
domain experts as a way of capturing features of system en-
tities that are potentially useful for detecting malicious ac-
tivity. Intuitively, the view collection is designed with the
intention that malicious activity will generally appear to be
anomalous in one or more of the views. The views are sent
to a multi-view anomaly detection algorithm (Section 4),
which combines the information to produce a ranking of sys-
tem entities according to their suspiciousness.

The ranking produced by the anomaly detector is fed to
a user interface, which allows an analyst to explore events
related to the high-ranked entities via a graphical interface
connected to the graph database. Since the focus of this pa-
per is on the anomaly detection component, we do not detail
the graphical interface portion of the system. After exploring
an anomaly, the analyst can provide feedback about whether
the anomaly was determined to be benign and unlikely re-
lated to an attack, or whether it is indeed part of an attack
or potentially part of an attack. This feedback is provided to
the anomaly detector, which incorporates the new informa-
tion in order to re-rank the entities (Section 5). The intent is
for the feedback from the analyst to allow the anomaly de-
tector to more quickly uncover entities that are truly of inter-
est to the analyst. For example, when the anomaly detector
receives feedback that an entity is benign, the detector will
be less likely to assign high anomaly scores to similar enti-
ties. The feedback loop between the anomaly detector and
analyst continues as long as analyst resources are available.

3 Data Ingestion
This section gives an overview of the data ingestion compo-
nent of our system, which is responsible for real-time prepa-
ration of the audit data stream for further processing.

Data Format. The audit data under investigation is col-
lected from one of several different operating systems sup-
ported by the auditing tools including Linux, Windows,
FreeBSD, and Android. These tools were developed by sev-
eral teams as part of a large DARPA project and used to
process system data generated from multiple hosts under the
control of a red team. Regardless of the originating source,
the data is represented with a common syntactic format ca-
pable of representing system activity at a level of abstraction
suitable for encoding operating system activity such as pro-
cess forking, thread spawning, making system calls, creating
network sockets, reading file descriptors, etc.

The data is collected on each host system and shipped off
the machine as a stream of statements that can be structured
as a heterogeneous property graph. Each node in the graph
has a unique ID and a set of key/value pairs corresponding to
properties. Edges are encoded as specially-named properties
with the ID of the other node as its value.

Node types in the graph are either Subjects, Objects, or
Events. Subjects represent processes, threads, or lower-level
units of execution like loop iterations. Objects represent
files, network communication, Windows registry entries, or
memory regions. Events are also represented as nodes which
have edges to other Subjects and Objects. For example, a
process reading a file is represented by a READ event node
with an edge to the Subject node performing the read, and
another edge to the file Object node of the file being read.

Ingest Process. To ingest and process the data, we built
a streaming system based on the Actor model (Haller and
Odersky 2006). Each statement representing one node in the
graph is read from the source and handed off to a lightweight
actor which then routes that statement to other actors for
further processing based on the data contained in that state-
ment. Our system uses Akka1 as the implementation of the
actor model and its streaming DSL, Akka Streams, to define
computation for each step in the ingest pipeline.

With this system we observed ingest rates in excess of
160k elements per second, with the system apparently IO
bound as it was reading data from a single source. Average
statement size varied with the data provider, and ranged be-
tween 116 and 509 bytes per statement when serialized with
Avro into a binary format.

The ingest pipeline is back pressured so that all stream
components are slowed down to the rate of the slowest
component–and no component is overwhelmed with more
data than it can handle. This approach allows identical
stream logic to be attached to faster and slower downstream
components interchangeably. Because of this capability we
were able to ingest data from the source, then split the stream
into one pipeline for writing in a graph database, and another
pipeline for performing anomaly detection. Since the focus
of this paper is on the anomaly detection component, we do
not detail the construction of the graph database.

1http://www.akka.io



Figure 1: Overview of the multi-view anomaly detection system

Table 1: Summary of the views and entity counts in the three sets of data used in our experiments (last three columns). The
counts for total number of events, processes, files, and netflows on each host is given along with the number of those entities
that are malicious, i.e. involved in the attack.

View Name #Features EntityType Host1(FreeBSD) Host2(FreeBSD) Host3(Ubuntu)
All Process Features 61

Process

# total = 16818 # total = 52979 # total = 57512Process Directory Scan 3
Process Exec from Network 4
Process File Events 17
Process Memory Events 5

# malicious = 18 # malicious = 13 # malicious = 30Process Netflow Events 8
Process Process Events 12
All File Features 33

File

# total = 119405 # total = 318898 # total = 18019Downloaded File Execution 5
Exfil Staging File 4
File Executed Stats 9
File MMap Stats 4

# malicious = 22 # malicious = 31 # malicious = 19File Modify Event 8
File Permission Event 3
All NetFlow Features 18

Netflow

# total = 36 # total = 124 # total = 1955Beaconing Behavior 3
Netflow Read Stats 5
Netflow Read Write Rate Lifetime 3

# malicious = 2 # malicious = 7 # malicious = 2NetFlow-related File Anomaly 6
Netflow Write Stats 5

Number of system events # total = 2.3M # total = 8.98M # total = 5.8M
#malicious = 316 #malicious = 473 #malicious = 1139

Anomaly Detection Preprocessing. As described in Sec-
tion 4 a key part of our system is the computation of multi-
ple views of the event stream for use in anomaly detection.
The primary computation involved in view construction is to
compute a set of features for system entities that aggregate
information about events related to the entity. To do this in
a streaming fashion our ingestor aggregates all event data
for each Subject and each Object, copying the event when
necessary to become a member of both sets. The result is a
collection of two-element tuples, each composed of a set of
Events and either one Subject or one Object.

From these tuples, paths in the event stream can be built
in a streaming fashion either by intersecting sets or by using
IDs from events in sets to lookup new sets on the other end
of the edge. Tuples are grouped together according to the
view definitions (see Section 4) defined in advance and used
to compute a collection of features for each item in the view.

To minimize the memory usage of this streaming aggre-
gation, we exploited the fact that most events for a single
Subject/Object arrive near each other in the stream. Each
aggregated tuple was managed by a lightweight actor which
serialized its data to disk after receiving no new events for
a specified time period. We used a fast key-value store for
this purpose which is able to keep the total memory usage of
our JVM-based pipeline to only a few hundred megabytes of
RAM. The anomaly component of our system was observed
to run at approximately 50k statements per second.

4 View-Based Anomaly Detection

In this section, we describe our view-based anomaly detec-
tion approach to detect malicious system entities, which will
be extended to incorporate analyst feedback in Section 5.



Figure 2: Isolation Forest tree structure and a set of corresponding region partitions for two dimensional space. Each node i.e.
a region is associated with a weight that is adjusted after feedback.

Data Views. Our approach is based on defining a set of
data views, which give a mechanism for system analysts to
express their system/security knowledge. Each view com-
putes a set of features for a class of system entities. Intu-
itively, we want to select a set of views such that malicious
system entities will appear anomalous with respect to one or
more of the views. By monitoring such views, anomaly de-
tectors have the potential to identify the malicious entities.

More formally a view v = (φv, fv) is a pair, where φv is
an entity filter, which defines a class of system entities (e.g.
all downloaded files) and fv is a feature function, which re-
turns a set of numeric features for any entity that passes the
filter. For example, a simple view might use a filter that se-
lects downloaded files and compute features of those entities
that record statistics about certain event types such as per-
mission changes and executions. A file that is downloaded
and prepared for execution as part of an attack may appear
anomalous under such a view.

For the system described in this paper, we created a set of
20 views over three major type of entities: processes, files
and netflows. A summary of these view is given in table 1.
Each entity type has a master view that contains all the fea-
tures related to that entity type and all other views for the
entity type contain a subset of features from the master view
based on the specific intent of the view.

Anomaly Detection for Individual Views. Our system
monitors each view with its own anomaly detector. In this
work, we employ the anomaly-detection algorithm Isola-
tion Forest (IF) (Liu, Ting, and Zhou 2008), which has been
shown to be a robust and state-of-the-art approach in recent
benchmark studies (Emmott et al. 2013). The input to IF is
a set of entities that are each described by a feature vector.
The output is an anomaly score for each entity that allows
entities to be ranked by their anomalousness, as described in
Section 3, for each view the ingestor computes, in real-time,
the set of feature vectors for each instance that is part of a
view. IF is an extremely fast algorithm and can process mil-
lions of instances in seconds, so is not a bottleneck in the
processing pipeline.

The key idea behind IF is to construct a forest of ran-

domized trees that each divide the feature space of a view
into hyper-rectangular regions. Figure 2 illustrates a single
IF tree, where each internal node of the tree splits data using
a random threshold for a randomly selected feature. In this
way, each node of the tree represents an hyper-rectangular
region of input space. Each IF tree is grown until the leaves
contain individual entities, or in other words, until all the
entities have been isolated from other entities into their own
regions. The anomaly score assigned to an entity for a sin-
gle tree is the negative depth of the leaf node at which it
becomes isolated. Thus, nodes that become isolated at shal-
lower leaves will be ranked as more anomalous. Intuitively,
this makes sense since entities that are anomalous compared
to other entities in a view will be easier on average to iso-
late from others via randomly selected tests in the tree. The
overall anomaly score assigned to an entity by an IF is the
average over anomaly scores of each IF tree. In our system,
we currently use IFs with 100 trees.

View Combination. By applying IF to each view in our
system, we get a set of anomaly rankings over the entities
in each view. If the analyst knew beforehand which views
were going to be most useful for detecting malicious entities
in an upcoming attack, then only high-ranking entities under
those views would need to be investigated. Unfortunately,
such hindsight information is not available and it will typi-
cally be unclear to an analyst which of the many views to pay
attention. For this reason, our system combines the anomaly
rankings across views into a single overall ranking over en-
tities that the analyst can use to focus his investigation.

There has been prior work on combining multiple
anomaly detection results, e.g. (Rayana and Akoglu 2016;
Aggarwal and Sathe 2015; Zimek, Campello, and Sander
2014; Zimek et al. 2013; Aggarwal 2013). These methods
are based on different combination principles, often related
to identifying rankings that maximally agree with the indi-
vidual rankings in some sense. In our own benchmark eval-
uations, however, using the wide set of benchmarks from
prior work (Emmott et al. 2013), we have found that no
one method is consistently superior. Further, we found that
simple averaging tends to be as good or better than more



complex mechanisms in terms of overall benchmark perfor-
mance. Thus, the default combination method in our system
is to use a simple averaging approach. In particular, for each
system entity, we compute its overall anomaly score as the
average of the anomaly scores it is assigned for each view
that it is part of. We did find that averaging tends to be more
robust than combining using the max over anomaly scores.

5 Combining Views via Analyst Feedback
We saw that using fixed combination strategies such as aver-
aging or more complex methods can often result in relatively
large false positive rates for certain hosts, which extends the
time needed to identify attacks. We hypothesize that this is
due to the fact that for a particular host with unique usage
patterns, there will often be many views that are not useful
for detecting malicious entities on that host. For example,
certain views will be prone to generate many false alarms on
a particular host due to the behavior of benign entities that
appear anomalous in those views. This suggests that one ap-
proach to improve detection performance is to be able to cus-
tomize a multi-view anomaly detector for a particular host
system based on feedback from a system analyst.

More specifically our system will operate in rounds,
where on each round the top ranked overall entity is shown
to an analyst. The analyst provides feedback about whether
the entity appears to be benign, or whether it is possibly (or
definitely) malicious. After each round, the overall anomaly
ranking is adjusted in a way that aims to move benign en-
tities lower in the ranking and malicious entities to the top.
The goal is to allow for the analyst to identify a malicious
entity in as few rounds as possible as well as maximizing
the number of malicious entities found over the feedback
rounds. Below, we describe our approach to incorporating
feedback into tree-based anomaly detectors such as IF. We
first specify the feedback mechanism as it may apply to in-
dividual views/detectors and then trivially extend it to com-
bine multiple views.

Feedback for Tree-based Anomaly Detectors. IF is
one member of a class of state-of-the-art anomaly detec-
tors(Liu, Ting, and Zhou 2008; Tan, Ting, and Liu 2011;
Chen, Liu, and Sun 2015; Wu et al. 2014) based on build-
ing forests of randomized trees. Interestingly, as pointed out
in recent work (Das et al. 2016; 2017), all of these meth-
ods can be captured by a generic tree-based anomaly detec-
tion framework. In particular, this framework builds a forest
of randomized trees in the fashion of IF and for each tree
node n in the forest assigns a numeric weight wn. Given this
forest, an entity e can be passed through each tree, yield-
ing a path from the root to a unique leaf in each tree based
on the e’s feature values. Let N(e) denote the set of tree
nodes along those paths. The anomaly score assigned to e,
denoted S(e) is then given by summing the weights of nodes
in N(e):

S(e) =
∑

n∈N(e)

wn.

Using this definition of S(e), we can replicate the
anomaly rankings produced by IF by simply setting wn =
−1 for all tree nodes. To see this, note that for this weight

setting, the anomaly score for an instance is equal to the neg-
ative sum of the path lengths followed in each tree, which is
directly proportional to the average isolation depth. Thus the
instance with highest anomaly score corresponds to the in-
stance with lowest average isolation depth. By setting the
weights to different values one can arrive at other types of
tree-based anomaly detection algorithms.

Our system initializes the anomaly detectors with weights
of −1 so that IF is the default anomaly detector. However,
feedback is used to adjust the weights in a way that aims to
improve the anomaly ranking over time. Recent work formu-
lated the problem of adjusting the weights based on feedback
as a non-convex optimization problem (Das et al. 2017). Un-
fortunately, solving this problem is computationally expen-
sive and does not scale well with the number of entities un-
der consideration. Thus, a key contribution of this paper is to
design a novel feedback mechanism that is extremely light
weight and at the same time performs as well or better than
the prior optimization-based approach.

Our feedback algorithm is a variant of the classic percep-
tron algorithm for classification problems (Novikoff 1962).
At each feedback iteration, the top ranked anomalous entity
e∗ is shown to the analyst based on the current weights in the
forest. The analyst then labels e∗ as either “benign” or “ma-
licious” and we let the entity label be l∗ = −1 and l∗ = 1
respectively. After receiving the feedback, for each node in
n ∈ N(e∗) we update the weights of those nodes according
to:

wn :=

{
wn − 1, if e∗ is “benign”,
wn + 1, if e∗ is “malicious”

.

Intuitively, if e∗ is a benign entity, then this update will de-
crease the overall anomaly score assigned to e∗ and more
importantly decrease the scores of similar entities that tra-
verse tree nodes in common with e∗. Conversely, if e∗ is
malicious, then the update will increase the score of e∗ and
also increase the score of similar entities, making them more
likely to rise to the top of the ranking. Unlike the traditional
perceptron algorithm, which only updates weights upon a
mistake (in our case a false positive), our algorithm updates
the weights at each feedback iteration. We found that this ap-
proach is significantly more effective when anomalies occur
in small clusters.

To illustrate our approach, Figure 3 shows results on sev-
eral anomaly detection benchmarks from (Das et al. 2017)
that compare our perceptron-style algorithm, the previous
state-of-the-art AAD (Das et al. 2017) algorithm, and an
IF baseline that does not take feedback into account. Each
graph shows 100 feedback iterations where the top ranked
entity is presented to a simulated analyst and the resulting la-
bel is used to update the anomaly detector (or ignored by the
pure IF). Each graph illustrates the number of true anoma-
lies found versus the number of feedback iterations. An ideal
results would be a line of slope one, which indicates that the
anomaly detector never shows the analyst a false positive. It
it clear from Figure 3 that the perception update is at least
as good as the AAD algorithm and often significantly better
than the IF baseline, which does not use feedback. In addi-
tion the perceptron method is very simple, fast and doesn’t
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Figure 3: Feedback result comparison with AAD (Das et al. 2017) on some standard anomaly detection datasets (Das et al.
2017): Abalone, ANN-Thyroid-1v3, Cardiotocography, Yeast, Covtype and Mammography (left to right and top to bottom)

require any parameter tuning (unlike AAD). For this reason,
for our cybersecurity experiments we focus exclusively on
using the perceptron method for incorporating feedback.

Incorporating Feedback with Multiple Views. Incorpo-
rating feedback for combining multiple views is nearly iden-
tical to incorporating feedback into individual views. For
each view, we create a dedicated forest of trees with their
own weights and initialize all weights to −1 in order to sim-
ulate IF. Given an entity e, the anomaly score is simply equal
to the average anomaly score assigned to it by views that it is
part of. When we receive feedback on the top ranked entity
e∗, we simply use the percptron algorithm to update the tree
weights for views that e∗ is part of. Intuitively, this updating
approach will simultaneously adjust the way that views are
combined and improve the anomaly detectors of individual
views. In particular, if a view is generally not useful, in the
sense that it produces many false positives, the weights in its
corresponding trees will be continually decreased, making it
less influential compared to other views.

6 Experiments on Red Team Attacks
Attack Datasets. The datasets for our experiments are based
on audit logs that were generated as part of attack campaigns
carried out by a red team as part of the DARPA Transperent
Computing program. We collected data from three different
hosts: two running the FreeBSD server operating system and
one was running the Ubuntu desktop operating system. Data
for two of the hosts (one FreeBSD and one Ubuntu) was
collected over a three day period and the third over a five
day period. During the data collection period all hosts were
running benign activities resembling normal workloads. On
each host, the red team executed an unknown attack cam-
paign, which started at a time that was unknown to us. Table
1 reports the number of system entities of type event, pro-

cess, file, and netflow that are observed on each host during
the data collection and the number of those entities that were
involved in the attack. It is clear that the number of malicious
entities is a very small fraction of the total system entities.

After the attacks were completed and our results reported
to the red team, the red team released a description of each
attack scenario, which outlined the key entities and events.
We used the descriptions in order to produce a ground truth
data level encoding of the attacks, where each entity and
event was labeled as being part of the attack or not. We use
this ground truth to evaluate our approach and also to sim-
ulate feedback provided by a system analyst. In particular,
when our simulated analyst is queried about an entity by our
system, the simulated analyst used the ground truth in order
to answer the query. We note that this is clearly an idealized
simulation of an analyst, since analysts will not always be
perfect. We consider evaluation of our approach under dif-
ferent noise models of analysts as interesting future work.

Because our tree based anomaly detection framework in-
volves randomization, due to the randomized construction of
the forests, we repeat each experiment on the collected data
10 times and report averaged results.

Result for Individual Views. We first consider applying
our approach to each of the individual views. The goal is to
observe the relative effectiveness of each view for detecting
malicious entities. Figure 4 shows the result on a selected set
of representative views from Host1 and Host2. Each graph
the plot shows the number of malicious entities discovered
by our approach versus the number of feedback iterations.
Here we consider a malicious entity to be discovered if it
was the top ranked entity that was presented to the analyst at
a particular iteration. The dashed black line shows the base-
line anomaly detection results for IF, which doesn’t use any
feedback i.e. a single ranking is computed at the start and
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Figure 4: Feedback iteration results for selected representative individual views. The views from left to right are File Modify
Event (Host1), Exfil Staging File (Host2), Process Process Events (Host1), and Beaconing Behavior (Host2).
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Figure 5: Feedback iteration results when applied to selected view combinations. From left to right: (a) combining only netflow
views (Host1), (b) combining all 20 views (Host1), (c) combining all process views (Host2), (d) combining all 20 views (Host2).

the analyst is shown entities in the order of that fixed rank-
ing. The red curve shows the performance achieved when
using analyst feedback via the perceptron-style weight up-
dates. Recall that these curves are averaged over 10 runs of
the algorithm. We can see that in some views, for example,
Process Process Events, Beaconing Behaviour and Netflow-
related File Anomaly, the feedback improves significantly
over baseline and in others both of the baseline and feedback
performs poorly. This indicates, as we should expect, that
some views are not useful for detecting entities in these at-
tacks, or at least none of our approaches are able to use them
effectively. We have no way to tell beforehand which view
will be effective on a particular host system. Thus, without
combining views one would need enough analyst resources
to monitor each view, which is unlikely in practice.

Combining Views via Feedback. We now evaluate our
view combination approach with and without feedback, us-
ing different grouping of views to be combined. We consid-
ered four sets of views to be combined: 1) All 20 views over
all system entities, 2) Only Process views, 3) Only Netflow
views, and 4) Only File views. By considering these groups
we can observe the relative importance of each entity type
to the detection and whether we are able to effectively com-
bine views across entity types. Figure 5 shows graphs for
selected combinations and hosts. With the exception of the
“Only Netflow” results on Host1 we see that using feedback
is able to significantly increase the rate that malicious en-
tities are discovered. We also see that the results for “All
views” produces higher discovery rates compared to “Only
Netflow” or “Only Process”, which indicates that combining
across views can be effective.

Table 2 provides a more comprehensive set of results. In
this table we give results for each of the 4 view groupings on
each of the hosts. In particular, we report the average number
of iterations until the first attack entity is discovered and also
the average number of attack entities that were discovered
after 50, 100, and 400 rounds of feedback. In each case, we
give results for both the IF baseline, which uses no feedback,
and our approach that uses feedback.

The first observation is that incorporating feedback per-
forms significantly better than the IF baseline in almost all
cases. Feedback allowed for the first attack entity to be dis-
covered significantly faster and also discovered more attack
entities for each number of feedback iterations.

A second observation is that we see our feedback ap-
proach is quite effective at combining views. In particular,
the approach is able to discover more anomalies for each
number of iterations by combining all views, compared to
just combining views related to a single entity type. We also
see that when restricted to a single entity type, the number of
feedback rounds needed to find the first attack entity varies
significantly. For example, on Host2 by combining just net-
flow views we are able to find the first attack entity in 1.6
rounds on average, versus not being able to find any attack
entity using a combination of just the file views. By combin-
ing all views, we see that the time required to find the first
anomaly is much closer to the minimum time across the in-
dividual entity types compared to the maximum time. This
indicates that even when some views are quite bad for de-
tection on a particular host, our combination approach is not
significantly hurt by their presence and can exploit the views
that are more effective.



Table 2: Summary result for all view combinations (averaged over 10 runs). H1 refers to Host1 and similar for H2 and H3. We
run feedback upto 1000 iterations maximum, so in the case of file entity type 1001 means no attack entities were discovered.

EntityType Algorithm
# of Feedback # of attack entities discovered within

untill 1st attack entity 50 feedback 100 feedback 400 feedback
H1 H2 H3 H1 H2 H3 H1 H2 H3 H1 H2 H3

All Baseline 57.7 90.3 42.2 0.6 1 1.4 1.3 1 2.9 2.6 3.3 3.9
Perceptron 3 7.4 22.2 2.4 3.3 3 2.5 4.1 4 5.9 11.5 5

Netflow Baseline 4 19 31 0.9 0.4 0 NA
Perceptron 1.1 1.6 24.1 1 1.3 0.7 NA

File Baseline 13.5 1001 1001 1 0 0 2 0 0 3 0 0
Perceptron 12.9 1001 1001 2 0 0 2 0 0 3 0 0

Process Baseline 63.5 55.2 1001 0.4 1.2 0 1.3 1.2 0 2.8 2.8 0
Perceptron 4.8 34.1 571.3 1.6 1.7 0.1 1.6 2.5 0.3 4.8 5.7 0.5

7 Summary
We developed a system that can work across different plat-
forms to detect malicious system entities using audit data
of a target host system. We employed view based anomaly
detection along with feedback and showed that it helps to
find attack entities more quickly using feedback than when
feedback is ignored. To the best of our knowledge this is
the first time that such feedback has been incorporated into
an anomaly detection system for reducing the false positive
rate in a cybersecurity setting. Moving forward we intend to
continue evaluating our approach on ever more complex at-
tacks, which will likely require development on new views
and other analysis techniques. Another critical component
moving forward is to study interfaces that best support a
system analyst in investigating proposed entities, which will
involve providing the analyst with clear explanations about
why our system believes an entity is potentially malicious.
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