
A baseline for unsupervised advanced persistent threat
detection in system-level provenance

Ghita Berrada James Cheney Sidahmed Benabderrahmane William Maxwell
Himan Mookherjee Alec Theriault Ryan Wright

Abstract

Advanced persistent threats (APT) are stealthy, sophisticated, and unpredictable cyberattacks that can steal
intellectual property, damage critical infrastructure, or cause millions of dollars in damage. Detecting APTs
by monitoring system-level activity is difficult because manually inspecting the high volume of normal sys-
tem activity is overwhelming for security analysts. We evaluate the effectiveness of unsupervised batch and
streaming anomaly detection algorithms over multiple gigabytes of provenance traces recorded on four differ-
ent operating systems to determine whether they can detect realistic APT-like attacks reliably and efficiently.
This report is the first detailed study of the effectiveness of generic unsupervised anomaly detection techniques
in this setting.

1 Introduction

For the past few years, damaging security/data breaches have frequently made the headlines [Gootman, 2016,
Silver-Greenberg et al., 2014, Lee et al., 2014, Karchefsky and Rao, 2017]. These breaches are all examples
of “advanced persistent threats” (APTs). Advanced Persistent Threats (APTs) are long-running, stealthy at-
tacks designed to penetrate specific target systems, carry out either pre-determined or dynamically updated
instructions from an adversary, and persist (while avoiding detection) for as long as required to accomplish the
adversary’s goals, such as data theft [Silver-Greenberg et al., 2014, Gootman, 2016] or corruption of the target
organization’s data and damaging of critical systems.

Security experts warn that APTs are now “part and parcel of doing business” [Auty, 2015] and concede
that it would be unrealistic for all such attacks to be prevented and blocked [Smith, 2013, Maisey, 2014, Auty,
2015], partly because even the best designed security systems are bound to have flaws and partly because
the targeted nature of the attacks means that the adversaries will persistently try to gain access to the target’s
system, adapting and changing their approaches if need be, until they reach their goal or the cost of succeeding
far outweighs the benefits to be gained. As a result, the experts consider that, while adopting state-of-the-art
prevention techniques is a must, the focus should shift to continuously monitoring the systems, detecting APTs
in a timely fashion and minimizing their damage.

Traditional security software and measures (e.g. anti-virus software, system security policies) generally
fail to detect APTs since APTs tend to mimic normal business logic and rely on actions that respect social
norms (e.g. work schedule of targeted users) or system security policies. Moreover, the fact that APTs are
long-running campaigns that consist of multiple steps further complicates their detection, in particular when
relying on event logs and audit trails that only provide partial information on temporally and spatially local-
ized events.

Provenance-tracking has been proposed as a basis for security (e.g. provenance-based access control [Park
et al., 2012]). It has been suggested that mining provenance data to analyze and identify causal relationships
among system activities could help identify security threats and malicious actions, such as data exfiltration,
that might go undetected with policy-driven approaches and other classical perimeter defence-based meth-
ods [Jewell and Beaver, 2011, Zhang et al., 2012, Awad et al., 2016, Jenkinson et al., 2017].

As appealing as the idea of monitoring provenance-like records to aid security sounds, there are, however,
numerous challenges to making it a reality. Beyond the issues linked with recording the provenance itself
(e.g. level of provenance granularity, fault tolerance, trustworthiness of the recorded trace [Jenkinson et al.,
2017]), the recorded provenance traces are expected to be large in volume, with anomalous system activity
(if any) likely to constitute but a very small fraction of the recorded traces. Analyzing provenance traces to
identify anomalous activity that would suggest an ongoing APT attack is a typical “needle in a haystack”
problem further compounded by the variety of possible APT patterns and the lack of available fully annotated

1

ar
X

iv
:1

90
6.

06
94

0v
4

 [
cs

.C
R

]
 1

8
N

ov
 2

01
9

data. Typical supervised learning techniques cannot therefore be used to detect (rare) APT patterns1. Further-
more, unsupervised anomaly detection over streaming graphs is challenging [Akoglu et al., 2015]. We know
of only one paper on anomaly detection over streaming provenance graph data [Manzoor et al., 2016] but this
approach relies on an initial training stage over “normal” example graphs, i.e. it is semisupervised.

In an operational security scenario, it is critical to be able to provide actionable information quickly. Security
analysts can usually identify and forensically investigate suspicious behavior (such as processes that have
been subverted or created by an attacker) once it is brought to their attention. However, in typical system
traces, each day of activity may lead to a gigabyte or more of provenance trace information, corresponding
to hundreds or thousands of processes, almost all of which are benign. In this paper, we consider the key
subproblem of quickly identifying unusual process activity that warrants manual inspection. Our approach
summarizes process activity using categorical or binary features such as the kinds of events performed by a
process, the process executable name and parent executable name, and IP addresses and ports accessed. We
focus on categorical data because attacks typically involve rare combinations of such attributes.

This article evaluates the effectiveness of several algorithms for unsupervised, categorical anomaly detec-
tion:

• FPOutlier (or Frequent Pattern Outlier Factor (FPOF)) [He et al., 2005]

• Outlier Degree (or OD) [Narita and Kitagawa, 2008]

• One-Class Classification by Compression (or OC3) [Smets and Vreeken, 2011]

• CompreX [Akoglu et al., 2012]

• Attribute Value Frequency (or AVF) [Koufakou et al., 2007, Tan et al., 2013]

All of these algorithms except for AVF are based on mining frequent itemsets or association rules and using
these results to assign anomaly scores. Moreover, these mining-based techniques are all batch algorithms: in a
first pass, the data is mined and analyzed (sometimes taking a lengthy period) and in a second pass, the scores
are assigned. AVF is, instead, based on a simple analysis of the frequencies of the attributes. The original paper
proposing AVF also only considered a batch setting, but later work [Tan et al., 2013] showed how to modify
AVF to a one-pass, streaming algorithm. We therefore refer to batch and streaming AVF in this paper.

We apply our work to provenance traces containing example APT attacks (on several different host operat-
ing systems) produced as part of the DARPA Transparent Computing program, in which attacks constitute as
little as 0.01% of the data. We evaluated all of the above algorithms in batch mode. Our experiments show that
on our dataset, AVF has anomaly detection performance comparable or better than the itemset mining-based
techniques, typically finding at least some parts of the attack within the top 1% or even 0.1%.

We also conducted experiments comparing batch and streaming AVF, using a modified form of the one-pass
algorithm of [Tan et al., 2013] that allows blocks of different sizes, in order to study how detection performance
is affected by streaming. Our experiments comparing batch and streaming AVF with different block sizes
show that there is little degradation in anomaly detection performance. Although our work (like any anomaly-
detection technique) does not guarantee to find all attacks, our contribution demonstrates that unsupervised
anomaly detection can help find APT-style attacks that currently go unnoticed, enabling analysts to focus their
efforts where they are most needed.

This article does not propose new anomaly detection algorithms, and does not evaluate all of the possible
algorithms for unsupervised anomaly detection on categorical data. All of the algorithms evaluated either
have publicly-available implementations, or were easy to re-implement. It is possible that better results could
be obtained using other algorithms that we have not yet tried; nevertheless, our results do establish a baseline
against which new approaches (or evaluation of other existing algorithms) can be measured. Such a baseline
is essential as a basis for assessing the effectiveness of more sophisticated algorithms, and whether their com-
plexity is justified by increases in effectiveness.
The main contributions of this paper are:

• Establishing baseline results for five categorical anomaly detection methods, i.e FPOF, OD, OC3, Com-
prex and AVF (in both batch and streaming modes for AVF) for the task of detecting APT-like activity in
system provenance traces

1Training supervised learning models for the APT detection task would require having a corpus of provenance data with realistic
APT attacks along with complete annotations indicating which parts of the provenance graphs are part of an attack. In an operational
context, such annotations are not readily available and generating annotations for the provenance graphs a posteriori is prohibitively
labor-intensive and time-consuming. Since we are developing/evaluating APT detection techniques to be used in an operational setting,
we cannot assume the existence of a fully annotated corpus so this naturally precludes the use of supervised learning models. The high
class imbalance inherent to this application also means supervised learning technques are not necessarily the best candidates for the
detection task.

2

• Thoroughly evaluating and comparing the effectiveness of these five anomaly detection methods for the
studied task

• Showing that some methods, namely OC3 and AVF, already produce useful detection results in reason-
able times despite their relative simplicity (“naive” set of features requiring barely any domain knowl-
edge or tweaking and/or very simple anomaly scoring strategy e.g. AVF) and that these results can, in
some cases (e.g. AVF), very easily be replicated in a streaming setting

• Discussing appropriate metrics for the detection task and proposing a metric from information retrieval
(normalized discounted gain) as a suitable metric

The structure of the rest of this paper is as follows. Section 2 presents the overall system architecture and
outlines our approach. Section 3 reviews AVF and our variant of streaming AVF. Section 4 presents an exper-
imental evaluation of the effectiveness of the different approaches, establishing a baseline for unsupervised
anomaly detection on this data. Section 5 summarizes related work on APTs and anomaly detection. Section 6
concludes and suggests directions for future work.

A short glossary of acronyms used in the paper is included as an appendix.

2 Overview

2.1 Provenance trace analysis

In this section, we situate our work as part of a realistic provenance-based security scenario. Figure 1 out-
lines the architecture of our system, which is designed to interoperate with several different (provenance)
recorders [Gehani and Tariq, 2012, Jenkinson et al., 2017], each running on a different operating system and
generating different styles of provenance graphs recording system activity (albeit in a common format). In this
paper, we consider four sources, running on Android, Linux, BSD and Windows operating systems.

Our system receives the provenance graph data from each recording system, as a stream of JSON records
in a binary format, and ingests the data into a graph database, Neo4J. In addition, ingestion performs some
additional data integration and deduplication steps to deal with some idiosyncrasies among the sources. The dif-
ferent systems use the shared data model in different ways, for example storing information in different places,
at different levels of granularity, or just not populating some fields. We remove some information that is not
consistently recorded and reorganize other information so that typical queries can be written portably across
data sources. Deduplication is important because the recorders add their own unique identifiers for operating
system processes and other objects. This is necessary to avoid ambiguity given that operating system-issued
process identifiers or filenames are not unique over long periods of time (i.e. days). However, some recording
systems create multiple records referring to the same process (or other object) with different unique identifiers.
The ingester attempts to detect and merge these duplicates, using heuristics such as “two processes with the
same process ID and started at the same time are identical”.

Once the graph data has been ingested, we extract Boolean-valued datasets called contexts from the graph
(an example of context is provided in Table 1). Each context represents an aspect of process behavior as a
Boolean-valued vector. As a simple example, we could use attributes corresponding to event types (read,
write, etc.) with value ‘1’ meaning that the process performed at least one event of that type and ‘0’ otherwise;
the exact number of such events is ignored. We discuss additional contexts later in this section. Contexts can
be extracted using queries over the fully-ingested data, for forensic analysis, or by incrementally maintaining
appropriate data structures and periodically emitting new records. Each context can then be run through the
anomaly detection algorithms described in Section 3, yielding a score for each process.

These scores are provided to the user interface (User Interface (UI)) frontend, which allows analysts to ex-
plore the graph using queries, or search for anomalies based on the scores. Figure 2 shows a typical provenance
graph created using the UI graph visualization system, as a result of a successful attack detection. This illus-
tration highlights that even fairly simple activities can yield complex graphs involving multiple read/write or
network access events.

Our system has participated in several DARPA exercises in concert with the recording systems, in which
realistic background activity was simulated on each system, and realistic APT-style attacks were performed,
yielding several gigabytes of raw trace data, corresponding to tens of millions of nodes and edges. We have
manually annotated the data to indicate the processes constituting the attacks for each of these scenarios.
Typically, the number of processes involved in an attack is very small: for example, in the largest dataset,
there are over 282,000 processes (representing seven days of activity), and only 46 of them (i.e. around 0.016%)
are involved in the attack. Even if we optimistically assume an analyst can recognize an attack process in
just 10 seconds, screening 200,000 processes would take over 23 days. Thus, although attacks are often easy

3

Win

BSD

Linux
Ingest

AVF

UIscoresrecords

Android
prov

graphs

OC3

CompreX

OD

FPOF

Figure 1: Architecture of our approach

to recognize once brought to the attention of an analyst, the sheer volume of background activity makes it
imperative to find ways to automatically direct attention to suspicious activity.

2.2 Contexts

We now give the details of the contexts that form the starting point for our proposed algorithms. In our
approach, the context definitions are the only places where domain knowledge about the data is used. We
consider the following contexts:

• ProcessEvent (Process Event (PE)): The integrated traces use event types such as open, close, exit, etc.
to describe process activity in a OS-independent way. A process p has attribute ty if p ever performs an
event of type ty (disregarding the exact number of events).

• ProcessExec (Process Exec (PX)): The attributes are executable names nm, for example ls or sudo. A
process p has attribute nm if p is an instance of executable nm.

• ProcessParent (Process Parents (PP)): The attributes are again executable names nm. A process p has
attribute nm if p is a child process of an executable named nm.

• ProcessNetflow (Process Network (PN)): The attributes are IP addresses ip and port numbers pn. A
process p has attributes ip and pn if it ever communicates with IP address ip at port pn.

• ProcessAll (Process All (PA)): the combination of all of the above contexts, with attributes renamed to
avoid any ambiguity (for example between PX and PP).

These contexts may seem rather simplistic. For example, it seems intuitive to also consider files accessed by
processes as attributes. Also, it would make sense to consider more complex attributes that look for patterns
that are known to be suspicious, such as downloading a file, executing it, and then deleting it. However,
our goal is to minimize the amount of fine-tuning needed to obtain useful results. There is also a trade-off
between granularity of attributes and performance: the more attributes we track, the more work needs to be
done at each step. Nevertheless, it would be worthwhile, in subsequent work, to consider richer contexts or
well-chosen attributes that encode domain knowledge about what activities are suspicious. It might also be
interesting to consider features that extend existing contexts, for example:

• the number of times each type of event is performed or the frequency of each type of event performed
(as opposed to just whether particular types of event are performed as in PE)

• Netflow properties not taken into account in PN such as total number of bytes transferred

Such features would require discretization if they are to be used with the categorical anomaly detection meth-
ods explored in this paper. Otherwise, they would have to be used with numerical anomaly detection methods
yet to be explored, with the results of such methods then fused with those obtained from categorical anomaly
detection methods. This is beyond the scope of the current paper and will be explored in future work.

4

Exfil of /etc/spwd.db
TA1 Data Provider : Cadets
FCA Detection of Process 9893
Discussion: Process 9893 appeared in our list of “top 10 rule breakers” from automatically
generated FCA rules. This process reads /etc/spwd.db (the system password database),
connects to 128.55.12.10 and sends data, and also writes to /var/run/logpriv This
apparently represents malicious exfiltration of the password database to 128.55.12.10 .

23

Figure 2: Example of attack provenance graph

Each of these contexts can also be extracted from the data incrementally, as the data is ingested. For each
process encountered, we construct an attribute vector with value 1 for each attribute the process has (in a given
context) and 0 otherwise. The resulting sequence of vectors constitutes a dataset D = x(1), . . . , x(n) which we
use as the starting point for the algorithms in the next section.

5

Table 1: Example of context: process identifiers vs type of system events, i.e ProcessEvent (PE) context (ex-
tracted from Android provenance graph)

O
bj

ec
t

ID

EV
EN

T
C

LO
N

E

EV
EN

T
C

H
EC

K
FI

LE
A

TT
R

IB
U

TE
S

EV
EN

T
O

TH
ER

EV
EN

T
M

PR
O

TE
C

T

EV
EN

T
C

LO
SE

EV
EN

T
C

R
EA

TE
O

BJ
EC

T

EV
EN

T
LS

EE
K

EV
EN

T
U

N
LI

N
K

EV
EN

T
W

A
IT

EV
EN

T
M

O
D

IF
Y

PR
O

C
ES

S

EV
EN

T
R

EC
V

FR
O

M

EV
EN

T
M

O
D

IF
Y

FI
LE

A
TT

R
IB

U
TE

S

EV
EN

T
W

R
IT

E

EV
EN

T
BI

N
D

EV
EN

T
R

EA
D

EV
EN

T
R

EN
A

M
E

EV
EN

T
O

PE
N

EV
EN

T
LO

A
D

LI
BR

A
R

Y

EV
EN

T
C

O
N

N
EC

T

EV
EN

T
SE

N
D

TO

EV
EN

T
SE

N
D

M
SG

285d5fed-
06dc-32ae
-a04a-
13cc9426616b

0 1 1 0 1 1 0 1 0 0 0 1 1 0 1 1 1 1 0 0 0

1e3548c0-
b030-3591
-97ac-
71b67bbcb305

0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0

b4f1724e-
0ba1-316b
-973f-
69e5d5e3490c

0 1 1 0 1 1 0 1 0 0 0 1 1 0 1 1 1 0 0 0 0

e2a4e818-
3ce2-3626
-8e22-
134b542d1d77

0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

......

6

3 Algorithms

We consider datasets D to be sequences of m-dimensional Boolean vectors, where there are n > 0 vectors and
m > 0 attribute values. Likewise, we consider data sources to be streams of m-dimensional vectors. In either
case, we consider a typical record x(i) at position i and write x(i)j for the value of attribute j in x(i). We assume
for simplicity that all attributes are Boolean-valued. It is not difficult to generalize to finite sets of attribute
values. We also assume that the number of possible attributes m is fixed.

We start by reviewing the various batch-only approaches then describe both Attribute Value Frequency
algorithm version, the original batch Attribute Value Frequency (AVF) algorithm [Koufakou et al., 2007] and
its extension to a streaming setting. We present the original algorithm in a batch processing form, i.e. where
we assume we have all of the data before computing scores. We show how to modify it to obtain an online
algorithm that gives a good approximation of the results of the batch algorithm, and allows for a choice of
different window sizes. This algorithm is a mild variation of the one-pass AVF algorithm [Tan et al., 2013].

3.1 Batch-only anomaly detection techniques

In this section, we briefly review the batch-only algorithms for anomaly detection in the literature used in our
evaluation. These descriptions are not exhaustive; the respective research papers should be consulted for full
details.

3.1.1 FPOutlier (FPOF)

The FPOutlier algorithm [He et al., 2005] starts by mining frequent itemsets according to a support parameter
minsupp (the algorithm only mines and considers itemsets that occur in a fraction of data transactions higher
or equal to minsupp). Then each object is assigned a score corresponding roughly to the number of frequent
itemsets it contains. Thus, larger scores correspond to more occurrences of frequent itemsets, meaning that
anomalous objects should have low scores. This approach seems well-suited to detect anomalies corresponding
to expected, but missing, activity. However, objects that have unusual activity but also display a large number
of common patterns may have high scores and not be considered anomalous. In addition, the fact that this
approach has a tunable parameter is problematic in an unsupervised setting, since it means that we need to
guess an appropriate value for this parameter in advance. We reimplemented FPOutlier using standard itemset
mining libraries.

3.1.2 Outlier Degree (OD)

The Outlier Degree algorithm [Narita and Kitagawa, 2008] also starts by mining frequent itemsets as well as
high-confidence rules, so there are two parameters, minsupp governing the minimum support of the itemsets
and mincon f governing the minimum confidence of the rules. Then each object is scored by applying the
high-confidence rules to it, and assigning a score corresponding roughly to the difference between the object’s
actual behavior and expected behavior (according to the rules). For example, if X → Y is a high-confidence
rule and object O displays behavior X but not Y, this will contribute to the score. High scores correspond to
larger differences between actual and expected behavior, so are more anomalous. Like FPOutlier, this approach
seems more likely to consider missing, but expected, behaviors to be anomalous, and could miss anomalies
that consist of rare behaviors that do not occur frequently enough to participate in rules. Also, the presence of
two tunable parameters is even more problematic from the point of view of unsupervised anomaly detection.
We reimplemented OD using standard itemset and rule mining libraries.

3.1.3 One-Class Classification by Compression (OC3)

OC3 [Smets and Vreeken, 2011] is based on a compression technique for identifying “interesting” itemsets,
implemented using the Krimp algorithm [Vreeken et al., 2011]. Essentially, the idea is to first mine frequent
itemsets from the data, and then identify a subset of the itemsets that help to compress the data well. Then,
each object is assigned an anomaly score corresponding to its estimated compressed size. If the compression
algorithm has done a good job, then objects exhibiting commonly occurring patterns will compress well, and
anomalies will not. So high compression sizes (i.e high scores) point to anomalies. OC3 can take a minsupp
support parameter, but parameter tuning is typically not necessary because the compression algorithm will
filter out any non-useful itemsets; therefore we used the smallest possible minsupp setting in our experiments.
The implementation of Krimp is available and we modified it slightly to perform OC3-style anomaly scoring.

7

3.1.4 CompreX

CompreX [Akoglu et al., 2012] is perhaps the most sophisticated approach studied to date. It is based on
compression, like OC3, but uses a different compression strategy. CompreX searches for a partition of the
attributes such that each set of attributes in the partition has high mutual information. Since there are expo-
nentially many partitions to consider, CompreX starts with the finest partition (all attributes are in their own
class) and greedily searches for pairs of classes to merge. Each resulting partition is then compressed sepa-
rately, to obtain an anomaly score for each record based on its compressed size, as in OC3. CompreX has no
tuning parameters and was shown experimentally to be competitive or superior in anomaly detection perfor-
mance to Krimp/OC3 on several datasets. However, CompreX’s default search strategy is quadratic in the
number of attributes; therefore, it was not usable on contexts with over 20-30 attributes.

3.2 Attribute Value Frequency (AVF)

In this section, we describe the original batch Attribute Value Frequency (AVF) algorithm [Koufakou et al.,
2007] and then its modification to suit a streaming setting [Tan et al., 2013]. Unlike the algorithms mentioned
earlier, AVF is rather simple and does not require additional background material to describe, both in the batch
and streaming settings. Since we implemented both variants of AVF from scratch in a unified way, rather than
reusing existing libraries or implementations as for the other approaches, we will spell out the details.

Attribute Value Frequency (AVF) [Koufakou et al., 2007] is a non-parametric outlier detection technique
appropriate for categorical data and was shown to be fast, scalable and accurate on a variety of standard data
sets. The algorithm relies on the intuition that outliers in a dataset have values of attributes which occur
infrequently. That the attribute values in a data point are infrequent can be determined simply by computing
the frequencies of the respective attribute values across the data.

Given a dataset D of size n, we write cj for the number of occurrences of attribute value 1 for attribute j, i.e.

cj = |{i | x(i)j = 1}| = ∑n
i=1 x(i)j . Then, the AVF score of a data point x is:

AVF(x) =
1
m

m

∑
j=1

(xjcj + (1− xj)(n− cj))

That is, when xj = 1, the contribution to the score for attribute xj is cj, the number of occurrences of j-value of
1, and when xj = 0, the contribution is the number of occurrences of a j-value of 0. The initial multiplication by
1/m effectively averages the counts, so 0 ≤ AVF(x) ≤ n, but such scaling has no effect on the relative ordering
among scores in the batch setting. Lower AVF scores indicate more unusual behavior.

Example 1 (Running example). To illustrate AVF, we introduce a small running example with four processes
P17, P42, P1337, P007 and three attributes abc.com, xyz.com and evil.com, corresponding to network addresses
accessed by the processes. In this (extremely simplistic) example, P17 and P42 are innocuous activity and access
both abc.com and xyz.com, while P1337 is a naive attacker that only accesses evil.com and P007 is a more
sophisticated attacker that accesses all three in order to attempt to camouflage its behavior. This behavior
corresponds to the following dataset:

id abc.com xyz.com evil.com
P17 1 1 0
P42 1 1 0

P1337 0 0 1
P007 1 1 1

We calculate the frequencies of the three attributes as cabc.com = cxyz.com = 3 and cevil.com = 2. Thus, the
AVF scores are:

AVF(P17) = 1
3 (3 + 3 + 2) = 8

3

AVF(P42) = 1
3 (3 + 3 + 2) = 8

3

AVF(P1337) = 1
3 (1 + 1 + 2) = 4

3

AVF(P007) = 1
3 (3 + 3 + 2) = 8

3

The naive attacker’s isolated access of evil.com, together with failure to mask its activity with common
behavior, results in a lower score, while the more sophisticated attacker’s score is the same as that of the first
two processes.

8

Streaming AVF: Naive approach A simple, but unfortunately too naive, approach to streaming the AVF
algorithm is to maintain the attribute value counts incrementally as data is processed, and use the current
counts to score each new transaction. That is, if c(i)j are the counts calculated for x(1) . . . x(i), then to score a new

record x = x(i+1) we proceed as follows:

AVF(i)
naive(x) =

1
m

m

∑
j=1

(xjc
(i)
j + (1− xj)(i− c(i)j))

However, because the counts are monotonically increasing, this means that the scoring will be heavily biased
towards considering records appearing early in the dataset to be anomalous. For example:

Example 2. Continuing our running example, we need to update the counts after each step. Thus, the AVF
scores are:

AVF(P17) = 1
3 (0 + 0 + 1) = 1

3

AVF(P42) = 1
3 (1 + 1 + 2) = 4

3

AVF(P1337) = 1
3 (1 + 1 + 0) = 2

3

AVF(P007) = 1
3 (2 + 2 + 1) = 5

3

In this (admittedly extreme) example, the first process P17 is judged most anomalous, followed by P1337, then
P42 and finally P007.

Streaming AVF As observed by [Tan et al., 2013], the problem is that the “scale” of the AVF scores is not fixed
in the streaming setting, since seeing an attribute whose value has occurred only once means something very
different for the 5th record in the dataset than for the 5000th record.

Instead, to compute AVF-like scores incrementally, we propose to use the frequency counts to estimate
probabilities for each attribute. We initially take p(0)j = 0 since the data is typically sparse (having relatively
few attribute values xj = 1); however, any other initial probability distribution could be used based on domain

knowledge. Next, for each new record x(i+1), we adjust the probability p(i+1)
j of each attribute value j being 1

after seeing x(i+1) as follows:

p(i+1)
j =

n×p(i)j +xj

i+1

We then calculate the AVF score for the i + 1st record x = x(i+1) as follows:

AVF(i+1)(x) =
1
m

m

∑
j=1

(xj p
(i+1)
j + (1− xj)(1− p(i+1)

j))

Note that, in the batch setting, dividing the counts by n and summing probabilities instead of counts would
not affect the final results, because all the counts are divided by the same n. However, for the streaming setting,
we update the attribute value probabilities after each step, so the results of AVF scoring will be different in the
streaming setting.

Example 3. Continuing our running example, we now update the probabilities after each step. Thus, the AVF
scores are:

AVF(P17) = 1
3 (0 + 0 + 1) = 1

3

AVF(P42) = 1
3 (

1
2 + 1

2 + 1) = 2
3

AVF(P1337) = 1
3 (

1
3 + 1

3 + 0) = 2
9

AVF(P007) = 1
3 (

1
2 + 1

2 + 1
4) =

5
12

The naive attacker’s behavior results in a lower (more anomalous) score than the first process P17.

3.2.1 Analysis

As outlined already, the batch AVF approach is implementable as two scans over the data, and the online
AVF approach can be implemented in a single, linear scan, where scoring each new record and updating the
frequencies takes O(m) time and space. Both algorithms just need to maintain the number of records n and the

9

m counts or probabilities. Thus, the overall time complexity of each algorithm is O(nm) and the space required
is O(m). In our experiments, the number of attributes m ranges from around 20 to over 14,000. Our approach
may not scale well if the attributes are fine-grained and m is much larger than n.

Another concern the reader might have is regarding arithmetic precision and overflow. If fixed-size (say,
32-bit) integers are used, then whenever we are in danger of overflowing we can rescale by dividing all of the
counts by 2; this is exactly what is done in arithmetic coding [Witten et al., 1987]. Our implementation uses
arbitrary-precision arithmetic.

4 Experimental evaluation

4.1 Experimental setup

The experiments were run on a desktop with an Intel Core i7-6700 CPU (3.4 GHz), 16 GB RAM, running
Ubuntu 16.04. The raw provenance trace data was ingested on a variety of machines and the contexts used
in the experiments were extracted and stored as CSV files2. We do not report the experimental setup for the
ingestion stage here in detail; however, it is easily able to keep up with the data in real-time (that is, ingestion of
data representing 7 days of system activity takes much less than 7 days). Our experiments focus on evaluating
the detection effectiveness and runtime cost of the anomaly detection algorithms on the given context data.

4.2 Datasets

In our experiments, we use two data collections described in Table 2 and representing two attack scenarios,
each consisting of several days’ worth of activity in a DARPA evaluation of provenance-tracking systems,
running on Windows, BSD, Linux and Android respectively. These data collections result from two exercises
for evaluating provenance recorders and anomaly detection techniques. The first data collection/scenario (a)
consists of roughly 5 days of processes and netflows activities, whereas the second data collection/scenario (b)
corresponds to around 8 days of data generated in similar conditions to the previous scenario. The provenance
graphs have been recorded on four different tracking systems, running on Windows, BSD, Linux and Android
respectively, each of which was subject to (part of) an APT-style campaign. The main differences between
scenarios 1 and 2 concern the background activity workload, the quality and the robustness of the attacks, and
the size of the provenance graphs.

Table 2 records, for each triplet context (rows 3 to 7)/OS/scenario (OS and scenarios are columns), the
number of transactions n (top value per context row) and the number of attributes m (bottom value per context
row). The number of processes encountered in each system varies significantly: in particular, the Linux dataset
records from 3–10 times as many distinct processes compared to the Windows or BSD datasets and up to 2400
times as many processes compared to Android. Some contexts are empty, e.g. PP for Android in Scenario 1,
where information about parent process relationships was unavailable. In general, among the base contexts,
the PE context usually has the largest number of processes, followed by PX and PP, while PN or PX have the
largest number of attributes, followed by PP. The number of attacks per OS/scenario is extremely low and
ranges from 8 (Windows both scenarios) to 46 (Linux scenario 2). Note that the size of the original dataset
does not directly correlate with the number of processes or attributes. For example, in scenario 1, the Android
dataset is the largest but has the fewest processes and attributes, because the provenance recorder for Android
records a great deal of low-level app activity and dynamic information flow tracking, which we do not analyze.
The last row represents the percentage of attacks observed in each OS/context. For example, there are 8 attack
processes in the Windows data (0.04%) in the first scenario, and 8 (0.07%) in the second one. The percentage of
attacks per OS/scenario goes as low as 0.004% (BSD scenario 2) and as high as 8.8% (Android scenario 1).

4.3 Evaluation metrics

The anomaly detection methods that we evaluate output a ranking of processes according to their degree of
suspiciousness/anomaly scores. These methods do not explicitly classify or label entities as anomalous or
normal. Moreover, the data is unbalanced, with between 0.004% and 8.8% of the data belonging to attacks. A
high accuracy could be obtained by simpliy classifying all processes as non-attacks, so accuracy would be a
poor indicator of model quality: this is the accuracy paradox [Thomas and Balakrishnan, 2008]. That being the
case, it would not be appropriate to use metrics usually employed to evaluate classification methods.

2available at http://www.gitlab.com/adaptdata

10

Table 2: Description of the datasets used during the experiments. In each context row (rows 3 to 7), the ele-
ment at the top shows the number of rows (processes) and the element at the bottom the number of columns
(attributes).

Windows BSD Linux Android

Scenario Scenario Scenario Scenario
1 2 1 2 1 2 1 2

Size 743 9.53 288 1.27 2858 25.9 2688 10.9
MB GB MB GB MB GB MB GB

ProcessEvent 17569 11151 76903 224624 247160 282087 102 12106
(PE) 22 30 29 31 24 25 21 27

ProcessExec 17552 11077 76698 224246 186726 271088 102 12106
(PX) 215 388 107 135 154 140 42 44

ProcessParent 14007 10922 76455 223780 173211 263730 0 24
(PP) 77 84 24 37 40 45 0 11

ProcessNetflow 92 329 31 42888 3125 6589 8 4550
(PN) 13963 125 136 62 81 6225 17 213

ProcessAll 17569 11151 76903 224624 247160 282104 102 12106
(PA) 14431 606 296 265 299 6435 80 295

nb attacks 8 8 13 11 25 46 9 13

% nb attacks
nb processes 0.04 0.07 0.02 0.004 0.01 0.01 8.8 0.10

4.3.1 Normalized discounted cumulative gain

To evaluate the anomaly detection algorithms described earlier, we propose using a metric called the normal-
ized discounted cumulative gain metric (or nDCG for short). It is a metric often used in information retrieval
to assess the quality of a ranking.

Given a typical document search application, Järvelin and Kekäläinen [2002] argued that, from a user’s
perspective, relevant documents are more valuable to a user than marginally relevant documents and a rele-
vant document ranked high in the returned list of results is more valuable than an equally relevant document
ranked lower in the list. A user may be reasonably assumed to scan the list of returned results from the begin-
ning before interrupting the scan at some point correlated with time availability, effort required as well as the
cumulated information from documents already seen. So it is safe to assume that relevant documents located
further down the list of returned results are unlikely to be seen by the user as they would require more time
and effort and become less valuable. Taking these facts into account, Järvelin and Kekäläinen [2002] introduced
the nDCG measure.

We similarly argue that, in our application, processes that are part of an attack but are ranked very low
by an anomaly detection technique are virtually useless to an analyst since his/her monitoring burden would
increase substantially with the amount of processes to be checked (not to talk about issues such as acquired loss
of trust in the automated monitoring system and discarding of its alerts as well as the increased potential for
misses and errors with the increase of data to monitor). Because of this, we believe nDCG to be an appropriate
metric for our application.

To compute the nDCG, we start by computing a score called discounted cumulative gain or DCG. The
basis of DCG is that each document/entity in the ranking is assigned a relevance score and is penalized by a
value logarithmically proportional to its position/rank in the list of results. The DCG is therefore computed as
follows:

DCGN =
N

∑
i=1

reli
log2(i + 1)

where N is the number of entities/documents in the list, reli the relevance score of the i-th entity/document in
the list.

11

Since the length of result lists can vary and the DCG score does not take that into account, it is common to
normalize the DCG score by the ideal DCG score (iDCG), which is simply the best achievable DCG score, i.e.
the score that would be achieved if all relevant entities were at the top of the list (and in the case of different
degrees of relevance, with the highest values of relevance at the very top). Assuming we have p relevant
entities in the list, we have:

iDCGN =
N

∑
i=1

reli
log2(i + 1)

nDCGN =
DCGN
iDCGN

In our case, we only consider entities to be either relevant (processes that are part of an attack) or irrelevant
(processes with normal behavior) and assign a relevance score reli of 1 to attack processes and of 0 to benign
processes, and the idealized score results from ranking all k attack processes at positions 1, . . . , k. The closer
the nDCG score to 1, the better the ranking.

4.3.2 Area under curve

The receiver operator characteristic curve (or ROC curve) for a given ranking of objects plots the fraction of true
positives found against the number of false positives found. The area under Receiver Operator Characteristic
curve (also called Area Under Curve (AUC)) is often used as a measure of anomaly detection performance

In our case, the AUC would correspond to the proportion of processes with normal behavior ranked lower
than processes that are part of an attack, computed as follows:

1
|A||A|

|{(α, β) : r(α) < r(β), (α, β) ∈ A× A}|

where A is the set of elements with a relevant label (i.e. elements that are part of an attack), A is the set of
elements with an irrelevant label (i.e. elements that have a normal behavior), r(α) (resp. r(β)) is the rank
assigned to α (resp. β) by the method to be evaluated. The best performance for a method under this metric
(resp. the worst performance) is achieved with AUC of one (resp. of zero).

However, in the presence of sparse anomalies in large datasets, the AUC score’s usefulness is somewhat
limited. The AUC can either overestimate the effectiveness of an algorithm (e.g. if all attacks are found at rank
900–1000 out of 200,000 then the AUC will be over 0.995 but the results are still nearly useless), or underestimate
it (e.g. if half of the attacks are found in the top 10 and the other half at rank 100,000, then the maximum
AUC is around 0.75 even though these results might be very valuable). Berrada and Cheney [2019] reported
some experiments on the same datasets including both AUC values and nDCG scores for the OC3 and AVF
algorithms and found that the scores are loosely correlated but AUC scores are typically uniformly high values
and much higher than nDCG scores. AUC scores usually fell in the relatively narrow range 0.75–0.99 (which
would seem to indicate that all algorithms perform well in the attack detection task), whereas nDCG scores
range typically from 0.2–0.8 (suggesting more nuanced performances). Based on this, AUC values wouldn’t
necessarily allow to properly discriminate between well performing and poorly performing algorithms. We
will therefore present only the nDCG scores for the batch algorithms, but present both nDCG and AUC scores
for the comparison of batch and streaming AVF in order to understand whether either metric is affected by
stream processing or block size.

4.4 Forensic anomaly detection

In this section we consider the following empirical question:

• Q1: Can the five batch methods (FPOF, OD, OC3, CompreX, AVF) detect APT-style attacks effectively?

We first evaluate the effectiveness and performance of the batch version of AVF compared with several
other offline techniques, such as FPOutlier (FPOF) [He et al., 2005], Outlier-degree (OD) [Narita and Kitagawa,
2008], OC3 [Smets and Vreeken, 2011], and CompreX [Akoglu et al., 2012].

FPOF and OD were reimplemented in Python according to the descriptions of the algorithms. We reused
publicly-available implementations of OC3 and CompreX3, implemented in C++ and Matlab respectively. The
FPOF, OD and OC3 methods require setting some parameters, which is not the case for AVF or CompreX.
For OC3, we used the lowest possible support parameter and used closed itemset mining to reduce the total
number of itemsets considered in the mining stage. For FPOF and OD, we considered a range of support

3http://eda.mmci.uni-saarland.de/prj/

12

Figure 3: Forensic analysis results: Linux (scenario 1)

and confidence parameter settings in the range 0.1–0.9 and 0.97 and report the best results obtained using any
parameter setting.

We report the results of all algorithms running on the contexts described in Section 2.2 in Table 3 for the first
scenario, and Table 4 for the second one. Some algorithms did not finish within a reasonable time (more than
3 hours) and when this is the case we write DNF. This happens most often with CompreX on contexts where
there are large numbers of attributes, because CompreX searches for a partition of the attributes into groups
with high mutual information, which seems to exhibit quadratic running time in the number of attributes.

FPOF and OD were not competitive on any dataset, even after trying several possible support and confi-
dence parameter values and taking the maximum nDCG score. The best two methods are AVF and OC3: in
scenario 1, AVF produced the best (or tied) results in 8 out of 19 scenarios and OC3 produced the best (or tied)
results, in 12 out of 19 scenarios. In the second attack scenario, AVF produced the best results in 4 out of 20 sce-
narios and OC3 produced the best results, in 12 out of 20 scenarios. AVF’s performance degrades significantly
from scenario 1 to scenario 2 (the nDCG range goes from a 0.20-0.84 range in scenario 1 to a 0.17-0.42 range
in scenario 2), in particular for the BSD and Android datasets, which might be due to both a large increase in
the size of BSD and Android contexts as well as a drop in the percentage of attacks present in the data. AVF
performs best on small to medium datasets. In contrast, OC3’s performance is more stable between scenarios
(the nDCG range goes from 0.21-0.74 in scenario 1 to 0.22-0.84 in scenario 2) and less affected by increase in
context size/drop in attack percentage (the performance only really drops for BSD-related contexts and by a
smaller margin than in the case of AVF).

CompreX was not able to complete within a reasonable time; for wider contexts such as PX or PP, it usually
did not terminate within a few minutes. Akoglu et al. [2012] mention that CompreX could be run as an anytime
algorithm, but the available implementation does not support this. In the few cases where CompreX completed
in a reasonable time (5 out of 20 scenarios in scenario 1 and 4 out of 20 scenarios in scenario 2), it frequently
outperformed both OC3 and AVF and performed best in most cases (3 out of 5 times for scenario 1 and 3 out
of 4 times for scenario 2).

In general, nDCG scores were highest for the Android dataset with the first attack scenario (between 0.83-
0.84) and lowest for the Linux dataset, suggesting a rough (but unsurprising) correlation between the amount
of data and difficulty of ranking attacks effectively. OC3 and AVF performed considerably better than any
other technique on the different datasets. Likewise, no single context was consistently best, and considering
all contexts joined together in PA was not always better than considering one of the base contexts.

To help build intuition regarding how the nDCG scores correspond to actual rankings, we visualize the
results of AVF for Linux (first attack scenario) in Figure 3. This “band diagram” shows the positions of the
attacks in the rankings obtained by AVF for the five contexts. The x-axis of the figure is logarithmic scale, so
red lines far to the left represent attacks ranked within the top 10, then top 100, etc. As this figure illustrates,
an nDCG score of 0.43 (obtained by AVF on the PX context in the 1st scenario) corresponds to two attacks
found in the top 10, while scores of under 0.3 tend to correspond to the highest-ranked attacks occuring at

13

rank 100–1000.
Overall, we can conclude that, AVF and OC3 are competitive since they generated the highest nDCG scores

in both scenarios.
Tables 5-14 show the running times for the various algorithms (Tables 5 to 9 for Scenario 1 and Tables 10

to 14 for Scenario 2). Just as with detection performance, the best performing algorithms in terms of running
time are OC3 followed by AVF: most scenarios complete under 3 minutes (18 out 20 for both OC3 and AVF for
scenario and 19 out of 20 for both OC3 and AVF for scenario 2). Runtime-wise, FPOF, CompreX and OD were
significantly more expensive (in the cases where they complete, they typically run in minutes rather than sec-
onds) compared to OC3 or AVF. As mentioned previously, Comprex does not complete in a reasonable time in
most cases (it only completes in 20% to 25% of the cases depending on the scenario). Both OD and FPOF com-
plete in more than 3 minutes in a significant proportion of the cases (7 out of 20 cases for scenario 1 and 14 out
20 cases for scenario 2) so are not competitive in terms of running time as well as detection performance: both
algorithms start with frequent itemset/frequent rule mining, which is notoriously computationally expensive
particularly for low support and/or confidence thresholds.

14

Table 3: Evaluation of batch anomaly scoring in Scenario 1 (nDCG scores). The higher the score (i.e the closer
to 1) the better. The best score per OS (row) is highlighted in bold.

FPOF OD OC3 CompreX AVF

Windows 0.20 0.20 0.30 0.60 0.60

BSD 0.20 0.19 0.43 0.54 0.51

Linux 0.18 0.18 0.38 0.30 0.27

Android 0.29 0.33 0.74 0.82 0.84
(a) ProcessEvent

FPOF OD OC3 CompreX AVF

Windows 0.15 0.15 0.28 DNF 0.28

BSD 0.15 0.15 0.49 DNF 0.34

Linux 0.18 0.18 0.30 DNF 0.43

Android 0.22 0.22 0.39 DNF 0.39
(b) ProcessExec

FPOF OD OC3 CompreX AVF

Windows 0.10 0.10 0.21 DNF 0.21

BSD 0.13 0.13 0.43 DNF 0.30

Linux 0.17 0.17 0.24 DNF 0.20

Android NA NA NA NA NA
(c) ProcessParent

FPOF OD OC3 CompreX AVF

Windows 0.36 0.36 0.71 DNF 0.58

BSD 0.13 0.14 0.32 DNF 0.26

Linux 0.23 0.23 0.48 DNF 0.31

Android 0.42 0.36 0.67 DNF 0.47
(d) ProcessNetflow

FPOF OD OC3 CompreX AVF

Windows DNF DNF DNF DNF 0.52

BSD 0.21 0.19 0.65 DNF 0.52

Linux DNF DNF DNF 0.46 0.29

Android 0.31 0.34 0.64 DNF 0.83
(e) ProcessAll15

Table 4: Evaluation of batch anomaly scoring in Scenario 2 (nDCG scores). The higher the score (i.e the closer
to 1) the better. The best score per OS (row) is highlighted in bold.

FPOF OD OC3 CompreX AVF

Windows DNF DNF 0.23 0.23 0.21

BSD 0.13 0.17 0.24 0.21 0.19

Linux 0.22 0.21 0.38 0.46 0.29

Android 0.36 0.22 0.32 0.78 0.30
(a) ProcessEvent

FPOF OD OC3 CompreX AVF

Windows DNF DNF 0.24 DNF 0.22

BSD 0.18 0.17 0.51 DNF 0.17

Linux 0.20 0.20 0.42 DNF 0.42

Android 0.29 0.29 0.39 DNF 0.38
(b) ProcessExec

FPOF OD OC3 CompreX AVF

Windows DNF DNF 0.22 DNF 0.22

BSD 0.10 0.09 0.29 DNF 0.17

Linux 0.20 0.20 0.42 DNF 0.25

Android 0.20 0.20 0.39 DNF 0.25
(c) ProcessParent

FPOF OD OC3 CompreX AVF

Windows DNF DNF DNF DNF DNF

BSD DNF 0.15 DNF DNF DNF

Linux DNF DNF DNF DNF DNF

Android 0.37 0.20 0.40 DNF 0.35
(d) ProcessNetflow

FPOF OD OC3 CompreX AVF

Windows DNF DNF DNF DNF DNF

BSD 0.21 0.19 0.38 DNF DNF

Linux DNF DNF 0.41 DNF DNF

Android 0.31 0.34 0.82 DNF 0.35
(e) ProcessAll

16

Table 5: Running time results (in seconds) for ProcessEvent context in scenario 1.

FPOF OD OC3 CompreX AVF

Windows 47.90 57.38 0.62 60.76 0.79

BSD 3418.85 3641.86 3.54 214.79 4.59

Linux 814.15 890.87 7.30 564.51 12.59

Android 0.44 0.46 0.01 13.22 0.01

Table 6: Running time results (in seconds) for ProcessExec context in scenario 1.

FPOF OD OC3 CompreX AVF

Windows 3.65 3.62 3.72 DNF 12.09

BSD 28.78 26.26 2.81 DNF 20.98

Linux 473.57 578.44 18.47 DNF 84.08

Android 0.46 0.04 0.02 DNF 0.02

Table 7: Running time results (in seconds) for ProcessParent context in scenario 1.

FPOF OD OC3 CompreX AVF

Windows 16.03 8.48 0.56 DNF 2.00

BSD 65.70 65.08 0.95 DNF 3.83

Linux 286.41 268.52 2.18 DNF 14.34

Android NA NA NA NA NA

Table 8: Running time results (in seconds) for ProcessNetflow context in scenario 1.

FPOF OD OC3 CompreX AVF

Windows 0.25 0.27 1120.22 DNF 156.66

BSD 36.41 37.48 0.01 DNF 0.02

Linux 5.80 1.99 0.12 DNF 0.59

Android 0.06 0.01 0.009 DNF 0.01

Table 9: Running time results (in seconds) for ProcessAll context in scenario 1.

FPOF OD OC3 CompreX AVF

Windows DNF DNF DNF DNF 2576.82

BSD 3333.97 3632.50 57.98 DNF 566.31

Linux DNF DNF 181.35 DNF 1951.59

Android 0.191 0.24 0.03 DNF 0.08

17

Table 10: Running time results (in seconds) for ProcessEvent context in scenario 2.

FPOF OD OC3 CompreX AVF

Windows DNF DNF 0.18 46.67 0.89

BSD 1840.7 2692.35 533.96 2975.59 17.20

Linux 2768.14 6054.92 22.77 970.79 16.16

Android 1551.88 1551.88 0.71 45.81 0.80

Table 11: Running time results (in seconds) for ProcessExec context in scenario 2.

FPOF OD OC3 CompreX AVF

Windows DNF DNF 4.71 DNF 23.45

BSD 302.46 323.59 32.72 DNF 100.07

Linux 514.98 513.23 42.30 DNF 131.05

Android 15.14 7.29 0.51 DNF 1.24

Table 12: Running time results (in seconds) for ProcessParent context in scenario 2.

FPOF OD OC3 CompreX AVF

Windows DNF DNF 0.50 DNF 2.15

BSD 326.34 280.18 6.98 DNF 18.46

Linux 417.15 437.27 8.92 DNF 27.63

Android 0.016 0.015 0.02 DNF 0.001

Table 13: Running time results (in seconds) for ProcessNetflow context in scenario 2.

FPOF OD OC3 CompreX AVF

Windows DNF DNF 0.05 DNF 0.12

BSD 32.76 36.55 1.82 DNF 7.02

Linux 4.60 4.89 45.51 DNF 28615.57

Android 0.90 0.65 0.63 DNF 0.83

Table 14: Running time results (in seconds) for ProcessAll context in scenario 2.

FPOF OD OC3 CompreX AVF

Windows DNF DNF DNF DNF DNF

BSD DNF 3146.47 DNF DNF DNF

Linux DNF DNF DNF DNF DNF

Android 1715.82 700.81 5.92 DNF 16.22

18

4.5 Streaming anomaly detection

In this section, we consider the following empirical questions:

• Q2: Is the detection performance of streaming AVF competitive with batch AVF in terms of nDCG and
AUC?

• Q3: Is the runtime performance of streaming AVF competitive with batch AVF?

4.5.1 Detection performance

To evaluate the streaming version of AVF, we generated 10 randomly-shuffled versions of each dataset from
Scenario 1 and ran the streaming algorithm on each dataset. We consider different randomly-shuffled datasets
in order to avoid any dependence on a particular order of processing the data; it could be that analyzing the
data ordered by time could produce better (or worse) results. In practice, it is not guaranteed that we will see
all processes in temporal order, because records for some long-lived processes may not become available until
the process terminates. We divided the datasets into block sizes of various granularities (1%, 5%, 10%, 25% of
the data) to investigate the effect of granularity on effectiveness and performance. For each dataset and block
size, we computed the median ranking of each attack over the 10 shuffled runs. These median rankings are
taken to be representative.

We present nDCG and AUC results for the PA context only; these results are representative of the base
contexts. Table 15 summarizes the nDCG and AUC metrics for the streaming algorithm (with four different
block sizes) and for the batch algorithm (at the bottom). These results show that the nDCG scores for all four
datasets are fairly stable, with only the Windows dataset displaying degradation of nDCG score of more than
0.01. Likewise, the AUC scores of most streaming variants were close to those of the batch algorithm, with
only the Windows and Android AUC scores changing by more than 0.01. Overall these results suggest that
small block sizes do not significantly degrade the usefulness of the results of AVF scoring.

Figure 4 plots the ratio of true positives found vs. ranking position, for the four different PA datasets. The
red lines are the performance of the batch AVF algorithm while the blue lines are the streaming versions. (For
the BSD dataset, the differences are not visible.) We can also gain a stronger intuition regarding the usefulness
of the results from these figures: for example, for the Linux PA context we can see that the nDCG score of 0.298
corresponds to finding about half of the attacks in the first 1% of the rankings, while others are not found until
40%. Figure 4 also shows that, for most datasets (except Android), at least 80% of true positives (i.e attacks) are
found in the top 5% of the data.

4.5.2 Analysis time

Figure 5 summarizes the time taken per run for both batch and streaming versions of AVF (the streaming times
were obtained by taking the median of the times over the ten runs on shuffled inputs). Note that the y-axis is
logarithmic scale. The running time is in general proportional to the amount of data in each context (number of
rows × number of columns). In particular, the time needed for PA is often considerably longer than the times
needed for the other contexts. The reason is that some contexts (such as PE) have many rows and few columns,
while others (such as PN) have many columns and few rows. Combining them into PA yields a very sparse
context with many zeros. We plan to investigate whether using a more succinct storage format for the contexts,
or combining the scores of the subcontexts, might lead to better performance. The streaming execution times
also increase, as expected, with the increase of streaming block size.

Table 15: Summary of the detection performance of batch and streaming AVF on PA for each dataset, and for
block sizes of 1%, 5%, 10%, and 25%. nDCG and AUC scores (higher is better)

Windows BSD Linux Android

nDCG AUC nDCG AUC nDCG AUC nDCG AUC

Stream 1% 0.518 0.993 0.524 0.984 0.298 0.927 0.832 0.872
Stream 5% 0.490 0.984 0.524 0.984 0.298 0.928 0.828 0.857
Stream 10% 0.522 0.994 0.524 0.984 0.298 0.927 0.826 0.849
Stream 25% 0.496 0.985 0.525 0.984 0.298 0.928 0.828 0.858

Batch 0.527 0.996 0.524 0.984 0.298 0.927 0.834 0.878

19

135 10 15 20 25 30 35 40 50 60 70 80 90 100
Percentage of objects seen

0

20

40

60

80

100

Tr
ue

 p
os

it
iv

e
ra

te
 (

%
)

Windows PA

AVF batch
AVF streaming 1%
AVF streaming 5%
AVF streaming 10%
AVF streaming 25%

(a) Windows

135 10 15 20 25 30 35 40 50 60 70 80 90 100
Percentage of objects seen

0

20

40

60

80

100

Tr
ue

 p
os

it
iv

e
ra

te
 (

%
)

BSD PA

AVF batch
AVF streaming 1%
AVF streaming 5%
AVF streaming 10%
AVF streaming 25%

(b) BSD

135 10 15 20 25 30 35 40 50 60 70 80 90 100
Percentage of objects seen

0

20

40

60

80

100

Tr
ue

 p
os

it
iv

e
ra

te
 (

%
)

Linux PA

AVF batch
AVF streaming 1%
AVF streaming 5%
AVF streaming 10%
AVF streaming 25%

(c) Linux

135 10 15 20 25 30 35 40 50 60 70 80 90 100
Percentage of objects seen

20

40

60

80

100

Tr
ue

 p
os

it
iv

e
ra

te
 (

%
)

Android PA

AVF batch
AVF streaming 1%
AVF streaming 5%
AVF streaming 10%
AVF streaming 25%

(d) Android

Figure 4: Percentage of processes seen versus percentage of attacks detected for PA

ProcessAll ProcessEvent ProcessExec ProcessNetflow ProcessParent

100

101

102

103

CP
U

 R
un

ni
ng

 t
im

e
(S

ec
 L

og
)

Batch
Streaming 1%

Streaming 5%
Streaming 10%

Streaming 25%

(a) Windows

ProcessAll ProcessEvent ProcessExec ProcessNetflow ProcessParent

10 1

100

101

102

CP
U

 R
un

ni
ng

 t
im

e
(S

ec
 L

og
)

Batch
Streaming 1%

Streaming 5%
Streaming 10%

Streaming 25%

(b) BSD

ProcessAll ProcessEvent ProcessExec ProcessNetflow ProcessParent
100

101

102

103

CP
U

 R
un

ni
ng

 t
im

e
(S

ec
 L

og
)

Batch
Streaming 1%

Streaming 5%
Streaming 10%

Streaming 25%

(c) Linux

ProcessAll ProcessEvent ProcessExec ProcessNetflow

10 1

CP
U

 R
un

ni
ng

 t
im

e
(S

ec
 L

og
)

Batch
Streaming 1%

Streaming 5%
Streaming 10%

Streaming 25%

(d) Android

Figure 5: Analysis time (batch AVF vs. streaming AVF)

20

5 Related work

Prior work on APTs is mostly concerned with describing/modeling the characteristics of an APT and its attack
model [Sood and Enbody, 2013, Virvilis et al., 2013, Chen et al., 2014], sometimes using case studies [Karchef-
sky and Rao, 2017]. A few recent studies address the APT detection problem by constructing models of normal
behavior against which incoming data is compared and flagged as anomalous if it deviates from the learned
models. Friedberg et al. [2015] explain the shortcomings of current security solutions with regards to APT
detection, in particular contending that preventive security mechanisms and signature-based methods are not
enough to tackle the challenge of APTs, and propose an anomaly detection-based framework to detect APTs by
learning a model of normal system behavior from host-based security logs and detecting deviations. Siddiqui
et al. [2016] use the fractal dimension as a feature to classify TCP/IP session data patterns into anomalous
(and part of an APT) or normal patterns. Moya et al. [2017] construct decision tree-based models of normal
network activity based on features extracted from firewall logs, then use the learned models to classify incom-
ing network traffic. Some work has also been done on the detection of specific patterns that might be part of
an APT attack e.g. detection of data leakage/data exfiltration [Jewell and Beaver, 2011, Awad et al., 2016] or
detection of command and control (C&C) domains [Niu et al., 2017]. Another recent paper [Lamprakis et al.,
2017] reconstructs a Web requests dependencies graph from Web requests logs using domain knowledge and
proposes an unsupervised approach relying on the reconstructed graph to identify APT C&C channels. In
contrast, in this paper, we seek to evaluate APT detection approaches developped on host-based data (unlike
[Lamprakis et al., 2017, Niu et al., 2017, Siddiqui et al., 2016, Moya et al., 2017] that rely on datasets recording
various aspects of network activity) that use as little domain knowledge as possible (the goal being to check
the detection performance on datasets constructed to minimize the amount of pre-processing and fine-tuning)
and try to detect traces of APT activity without targeting a specific type of APT pattern (unlike [Jewell and
Beaver, 2011, Awad et al., 2016]).

There is a considerable literature on intrusion and malware detection, which is mainly split in two ap-
proaches: misuse detection (e.g. [Kumar and Spafford, 1994]) and anomaly detection (e.g. [Ji et al., 2016]).
The principle of misuse detection is to search for events (i.e. known attacks) that match predefined signatures
and patterns. Methods relying on misuse detection can only detect attacks whose signature and patterns are
known, which would be unsuitable for APT detection. By contrast, anomaly detection assumes abnormal be-
haviours can come in varied, potentially unknown, shapes and focuses on detecting activity that deviates from
normal activity i.e. activity usually recorded on a particular host or network.

There are several comprehensive surveys of anomaly detection and outlier detection that consider categor-
ical data, continuous data, and structured data (e.g. graphs) [Chandola et al., 2009, Akoglu et al., 2015]. Of
these approaches, graph anomaly detection appears the most relevant for our problem, but most of this work
has considered special cases of graphs (e.g. undirected or unlabeled), whereas provenance graph data has
rich structure (labeled nodes, labeled edges, multiple properties on nodes and edges). Anomaly detection ap-
proaches for provenance graphs reported so far rely on training on benign traces [Manzoor et al., 2016], require
user-provided annotations [Hossain et al., 2017], or assume that the background activity is highly regular [Ul
Hassan et al., 2018]. Another recent contribution by Siddiqui et al. [2018] shows that human-in-the-loop feed-
back can be used in a semi-supervised way to improve detection results over baseline unsupervised detectors
over numerical data. Berrada and Cheney [2019] investigated aggregation of anomaly scores/ranks from differ-
ent contexts, and found that using AVF and OC3 as base detectors, simple score or rank aggregation techniques
provide improved detection performance.

On the other hand, there are a number of generic approaches to anomaly detection for discrete (categorical)
data [He et al., 2005, Narita and Kitagawa, 2008, Koufakou et al., 2007, 2011, Smets and Vreeken, 2011, Bertens
et al., 2017, Akoglu et al., 2012, Bertens et al., 2017]. Most of these approaches first mine the data for frequent
itemsets or association rules, and all then perform anomaly scoring in a second pass over the data. A one-
pass, streaming variant of AVF was presented by Tan et al. [2013]. Some approaches, notably OC3 [Smets and
Vreeken, 2011] and CompreX [Akoglu et al., 2012], are based on the Minimum Description Length (MDL) prin-
ciple [Grünwald, 2007]. Both perform a preprocessing stage to find a compressed representation of the dataset,
then consider the resulting compressed size of each record as its score. Since OC3 was often the most effective
batch algorithm, we think it would be interesting to develop a streaming approach based on MDL, either by
adapting the underlying Krimp compression algorithm [Vreeken et al., 2011] to support streaming anomaly
detection, or by building on streaming compression techniques such as adaptive arithmetic coding [Witten
et al., 1987]. The UPC algorithm of Bertens et al. [2017] is also based on pattern mining and MDL, and is inher-
ently a two-pass approach, but seeks a different kind of anomalies than AVF, OC3, and CompreX, consisting
of unexpectedly rare combinations of frequent itemsets.

There are also some anomaly detection techniques for mixed categorical and numerical data [Yamanishi
et al., 2004, Koufakou and Georgiopoulos, 2010] that could be applied to pure categorical data. The ODMAD
algorithm [Koufakou and Georgiopoulos, 2010], like most categorical techniques, performs an initial off-line

21

pattern mining stage. To the best of our knowledge SmartSifter [Yamanishi et al., 2004] is the only previous
unsupervised online algorithm applicable to categorical data. SmartSifter incrementally maintains a histogram
density model of the categorical data and, for each combination of attributes, a continuous distribution (such
as a multivariate Gaussian mixture model) for the numerical attributes. SmartSifter’s running time is O(2md2k)
where m is the number of categorical attributes, d the number of numerical attributes (i.e. dimension) and k the
number of components of the mixture model. Their experiments considered datasets with m ≤ 1 and d ≤ 7,
and it is unclear whether this approach can scale to large numbers (m > 100) of categorical attributes. The
techniques based on itemset mining are exponential in the number of attributes in the worst-case, but have
acceptable performance in practice, while the AVF approaches require only O(m) time to process each input
record.

Relatively few publications making use of the DARPA Transparent Computing datasets have appeared;
much of the data has not been made publicly available, and ground truth annotations are often not available
in machine-readable form. In some cases, systems have been evaluated using these datasets but the raw data,
or derived products, have not been made available, making it difficult to reproduce their results. Both Sid-
diqui et al. [2018] and Berrada and Cheney [2019] used datasets derived from Transparent Computing but the
data were not made publicly available. We believe that this article is the first to evaluate anomaly detection
algorithms on publicly available datasets derived from the Transparent Computing project.

6 Conclusion

Detecting APT-style attacks in real-world settings is extremely difficult in general. In this paper, we investigate
the feasibility of finding processes that may be part of such attacks by analyzing their behavior. We considered
five different batch algorithms, one of which can also be adapted easily to a streaming setting. Our experiments
showed that both batch and online approaches are effective in finding attacks and can analyze several days’
worth of activity (tens or hundreds of thousands of process summaries, sometimes with over ten thousand
attributes) in a few minutes, a negligible cost compared to the time and effort needed to record and store this
data. Moreover, our results are validated on provenance traces gathered from four different operating systems,
subject to several different kinds of attacks; many of the attacks were typically ranked among the top 0.1-1%.

We believe that this work represents a significant contribution, in that it can provide a low-cost, yet effective
line of defense in a larger provenance-based monitoring system, and establishes a baseline for comparison of
more sophisticated (and time-consuming) techniques. Nevertheless, there are a number of areas for improve-
ment. First, interpreting and analyzing the processes flagged for investigation is still mostly a manual process,
motivating further support for identifying connections between the most anomalous processes. Second, it is
also important to consider the (common) case when there is no attack. Since attacks are rare and, in a given
trace, there are typically hundreds or thousands of anomalous processes that are not part of the attack, more
work is needed to identify suitable thresholds to limit effort in this case. Finally, our approach assumes that
the attacker is not aware of or able to manipulate the detection system; sophisticated attackers will naturally
seek to either evade observation entirely or modify their behavior so as to minimize anomaly scores. Further
research is needed on how to make anomaly detection robust even if attackers know how their activity is being
monitored.

Acknowledgements

This material is based upon work partially supported by the Defense Advanced Research Projects Agency
(DARPA) under contract FA8650-15-C-7557. Mookherjee was partially supported by a grant from LogicBlox,
Inc.

References

Leman Akoglu, Hanghang Tong, Jilles Vreeken, and Christos Faloutsos. Fast and reliable anomaly detection
in categorical data. In CIKM, pages 415–424, 2012.

Leman Akoglu, Hanghang Tong, and Danai Koutra. Graph based anomaly detection and description: a survey.
Data Min. Knowl. Discov., 29(3):626–688, 2015.

Mike Auty. Anatomy of an advanced persistent threat. Network Security, 2015(4):13–16, 2015.

Abir Awad, Sara Kadry, Guraraj Maddodi, Saul Gill, and Brian Lee. Data leakage detection using system call
provenance. In INCoS, pages 486–491. IEEE, 2016.

22

Ghita Berrada and James Cheney. Aggregating unsupervised provenance anomaly detectors. In 11th Inter-
national Workshop on Theory and Practice of Provenance (TaPP 2019), Philadelphia, PA, June 2019. USENIX
Association. URL https://www.usenix.org/conference/tapp2019/presentation/berrada.

Roel Bertens, Jilles Vreeken, and Arno Siebes. Efficiently discovering unexpected pattern-co-occurrences. In
SDM, pages 126–134, 2017.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM Comput. Surv., 41
(3):15:1–15:58, July 2009. ISSN 0360-0300.

Ping Chen, Lieven Desmet, and Christophe Huygens. A study on advanced persistent threats. In IFIP Interna-
tional Conference on Communications and Multimedia Security, pages 63–72. Springer, 2014.

Ivo Friedberg, Florian Skopik, Giuseppe Settanni, and Roman Fiedler. Combating advanced persistent threats:
From network event correlation to incident detection. Computers & Security, 48:35–57, 2015.

Ashish Gehani and Dawood Tariq. SPADE: support for provenance auditing in distributed environments. In
Middleware, pages 101–120, 2012.

Stephanie Gootman. OPM hack: The most dangerous threat to the federal government today. Journal of Applied
Security Research, 11(4):517–525, 2016.

Peter Grünwald. The Minimum description length principle. MIT Press, 2007.

Zengyou He, Xiaofei Xu, Joshua Zhexue Huang, and Shengchun Deng. FP-outlier: Frequent pattern based
outlier detection. Comput. Sci. Inf. Syst., 2(1):103–118, 2005.

Md Nahid Hossain, Sadegh M. Milajerdi, Junao Wang, Birhanu Eshete, Rigel Gjomemo, R. Sekar, Scott Stoller,
and V. N. Venkatakrishnan. SLEUTH: real-time attack scenario reconstruction from COTS audit data. In
USENIX Security 2017, pages 487–504, 2017.

Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of IR techniques. ACM Transactions
on Information Systems (TOIS), 20(4):422–446, 2002.

GC Jenkinson et al. Applying provenance in APT monitoring and analysis: Practical challenges for scalable,
efficient and trustworthy distributed provenance. In TaPP. USENIX Association, 2017.

Brian Jewell and Justin Beaver. Host-based data exfiltration detection via system call sequences. In ICIW, pages
134–142. Academic Conferences Limited, 2011.

Soo-Yeon Ji, Bong-Keun Jeong, Seonho Choi, and Dong Hyun Jeong. A multi-level intrusion detection method
for abnormal network behaviors. Journal of Network and Computer Applications, 62:9–17, 2016.

Solomon Karchefsky and H. Raghav Rao. Toward a Safer Tomorrow: Cybersecurity and Critical Infrastructure,
pages 335–352. Palgrave Macmillan UK, London, 2017. ISBN 978-1-137-60228-2.

Anna Koufakou and Michael Georgiopoulos. A fast outlier detection strategy for distributed high-dimensional
data sets with mixed attributes. Data Min. Knowl. Discov., 20(2):259–289, 2010.

Anna Koufakou, Enrique G. Ortiz, Michael Georgiopoulos, Georgios C. Anagnostopoulos, and Kenneth M.
Reynolds. A scalable and efficient outlier detection strategy for categorical data. In ICTAI 2007, pages 210–
217, 2007.

Anna Koufakou, Jimmy Secretan, and Michael Georgiopoulos. Non-derivable itemsets for fast outlier detection
in large high-dimensional categorical data. Knowl. Inf. Syst., 29(3):697–725, 2011.

Sandeep Kumar and Eugene H Spafford. A pattern matching model for misuse intrusion detection. Technical
Report 94-071, Purdue University, 1994.

Pavlos Lamprakis, Ruggiero Dargenio, David Gugelmann, Vincent Lenders, Markus Happe, and Laurent Van-
bever. Unsupervised detection of apt c&c channels using web request graphs. In International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment, pages 366–387. Springer, 2017.

Robert M Lee, Michael J Assante, and Tim Conway. German steel mill cyber attack. Industrial Control Systems,
30, 2014.

Martin Maisey. Moving to analysis-led cyber-security. Network Security, 2014(5):5–12, 2014.
23

Emaad A. Manzoor, Sadegh M. Milajerdi, and Leman Akoglu. Fast memory-efficient anomaly detection in
streaming heterogeneous graphs. In KDD, pages 1035–1044, 2016.

Juan Ramón Moya, Noemı́ DeCastro-Garcı́a, Ramón-Ángel Fernández-Dı́az, and Jorge Lorenzana Tamargo.
Expert knowledge and data analysis for detecting advanced persistent threats. Open Mathematics, 15(1):
1108–1122, 2017.

Kazuyo Narita and Hiroyuki Kitagawa. Outlier detection for transaction databases using association rules. In
WAIM, pages 373–380, 2008.

Weina Niu, Xiaosong Zhang, GuoWu Yang, Jianan Zhu, and Zhongwei Ren. Identifying APT malware domain
based on mobile DNS logging. Mathematical Problems in Engineering, 2017, 2017.

Jaehong Park, Dang Nguyen, and Ravi Sandhu. A provenance-based access control model. In PST, pages
137–144. IEEE, 2012.

Md Amran Siddiqui, Alan Fern, Thomas G. Dietterich, Ryan Wright, Alec Theriault, and David W. Archer.
Feedback-guided anomaly discovery via online optimization. KDD, pages 2200–2209. ACM, 2018. ISBN
978-1-4503-5552-0.

Sana Siddiqui, Muhammad Salman Khan, Ken Ferens, and Witold Kinsner. Detecting advanced persistent
threats using fractal dimension based machine learning classification. In Proceedings of the 2016 ACM Inter-
national Workshop on Security And Privacy Analytics, pages 64–69. ACM, 2016.

Jessica Silver-Greenberg, Matthew Goldstein, and Nicole Perlroth. JPMorgan Chase hack affects 76 million
households. New York Times, 2, 2014.

Koen Smets and Jilles Vreeken. The odd one out: Identifying and characterising anomalies. In SDM 2011,
pages 804–815, 2011.

Don Smith. Life’s certainties: death, taxes and APTs. Network Security, 2013(2):19–20, 2013.

Aditya K Sood and Richard J Enbody. Targeted cyberattacks: a superset of advanced persistent threats. IEEE
security & privacy, 11(1):54–61, 2013.

Swee Chuan Tan, Si Hao Yip, and Ashfaqur Rahman. One pass outlier detection for streaming categorical data.
In Third International Workshop on Intelligent Data Analysis and Management, pages 35–42, 2013.

Ciza Thomas and N. Balakrishnan. Improvement in minority attack detection with skewness in network traffic.
In Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security, page 69730N, 2008.

Wajih Ul Hassan, Mark Lemay, Nuraini Aguse, Adam Bates, and Thomas Moyer. Towards scalable cluster
auditing through grammatical inference over provenance graphs. In NDSS, 2018.

Nikos Virvilis, Dimitris Gritzalis, and Theodoros Apostolopoulos. Trusted computing vs. advanced persistent
threats: Can a defender win this game? In UIC/ATC, pages 396–403. IEEE, 2013.

J. Vreeken, M. van Leeuwen, and A. Siebes. KRIMP: Mining itemsets that compress. Data Mining and Knowledge
Discovery, 23(1):169–214, 2011.

Ian H. Witten, Radford M. Neal, and John G. Cleary. Arithmetic coding for data compression. Commun. ACM,
30(6):520–540, June 1987. ISSN 0001-0782.

Kenji Yamanishi, Jun-Ichi Takeuchi, Graham Williams, and Peter Milne. On-line unsupervised outlier detection
using finite mixtures with discounting learning algorithms. Data Min. Knowl. Discov., 8(3):275–300, May 2004.
ISSN 1384-5810.

Olive Qing Zhang, Ryan KL Ko, Markus Kirchberg, Chun Hui Suen, Peter Jagadpramana, and Bu Sung Lee.
How to track your data: Rule-based data provenance tracing algorithms. In TrustCom, pages 1429–1437.
IEEE, 2012.

24

Acronyms

APTs Advanced Persistent Threats.

AUC Area Under Curve.

AVF Attribute Value Frequency.

FPOF Frequent Pattern Outlier Factor.

nDCG Normalized Discounted Cumulative Gain.

OC3 One-Class Classification by Compression.

OD Outlier Degree.

PA Process All.

PE Process Event.

PN Process Network.

PP Process Parents.

PX Process Exec.

ROC Receiver Operator Characteristic.

UI User Interface.

25

